А) Если конденсатор сначала заряжают, а затем отключают от источника напряжения, то неизменным остается заряд q на обкладках, а при увеличении втрое расстояния изменяется емкость С и напряжение U на нем. Соответственно энергия W=q^2/2C. Так как емкость С=eS/d, C1=eS/d, C2=eS/3d =C1/3, то W2=3W1. б) Если конденсатор остается подключенным, то у такого конденсатора изменяется вследствие увеличении расстояния его емкость С2=C1/3 и заряд на обкладках q=C*U. U естественно остается тем же, а q2=C2*U=C1*U/3. W2=q2^2/2C2=3(C1*U)^2/9*2*C1=(C1*U)^2/6*C1=C*U^2/6=W1/3, W1=C*U^2/2.
Обозначим (см. рис.) силу натяжения нити в точке изгиба T0T0 (с обеих сторон эти силы равны, так как блок невесомый, и массой куска нити, касающегося блока, по сравнению с массой всей нити можно пренебречь). В силу того, что нить весомая и нерастяжимая, масса части нити длиной xx равна mн⋅x/lmн⋅x/l. Тогда можно записать уравнения движения кусков нити — вертикального, длины xx, и горизонтального, длины l−xl−x: mнgxl+T1−T0=mнaxlmнgxl+T1−T0=mнaxl, T0−T2=mнal−xlT0−T2=mнal−xl. Сложим эти уравнения и, учитывая, что T1=T2T1=T2, получим mн/l⋅xg=mн/l⋅a(x+l−x)mн/l⋅xg=mн/l⋅a(x+l−x), x=aglx=agl. (1) Ускорение aa одно и то же у всех частей системы. Мы записали систему сразу в скалярном виде, потому что в векторах она будет очень сложной. Теперь запишем уравнения движения грузов: T2=m2aT2=m2a, m1g−T1=m1am1g−T1=m1a. Учитывая, что T1=T2T1=T2, складываем и получаем, получим m1g=(m1+m2)am1g=(m1+m2)a, a=m1m1+m2ga=m1m1+m2g. (2) Тогда из (1) и (2) получаем x=m1m1+m2l=m2m/3+ml=35lx=m1m1+m2l=m2m/3+ml=35l. (3) Подставляя (3) в (1), получаем a=3g/5a=3g/5. (4) Отсюда для силы натяжения получаем T1=T2=m2a=2m335g=25mgT1=T2=m2a=2m335g=25mg. (5) Соотношения (3), (4), (5) дают решение задачи. Источник: https://earthz.ru/solves/Zadacha-po-fizike-4784
б) Если конденсатор остается подключенным, то у такого конденсатора изменяется вследствие увеличении расстояния его емкость С2=C1/3 и заряд на обкладках q=C*U. U естественно остается тем же, а q2=C2*U=C1*U/3.
W2=q2^2/2C2=3(C1*U)^2/9*2*C1=(C1*U)^2/6*C1=C*U^2/6=W1/3, W1=C*U^2/2.
Обозначим (см. рис.) силу натяжения нити в точке изгиба T0T0 (с обеих сторон эти силы равны, так как блок невесомый, и массой куска нити, касающегося блока, по сравнению с массой всей нити можно пренебречь). В силу того, что нить весомая и нерастяжимая, масса части нити длиной xx равна mн⋅x/lmн⋅x/l. Тогда можно записать уравнения движения кусков нити — вертикального, длины xx, и горизонтального, длины l−xl−x: mнgxl+T1−T0=mнaxlmнgxl+T1−T0=mнaxl, T0−T2=mнal−xlT0−T2=mнal−xl. Сложим эти уравнения и, учитывая, что T1=T2T1=T2, получим mн/l⋅xg=mн/l⋅a(x+l−x)mн/l⋅xg=mн/l⋅a(x+l−x), x=aglx=agl. (1) Ускорение aa одно и то же у всех частей системы. Мы записали систему сразу в скалярном виде, потому что в векторах она будет очень сложной. Теперь запишем уравнения движения грузов: T2=m2aT2=m2a, m1g−T1=m1am1g−T1=m1a. Учитывая, что T1=T2T1=T2, складываем и получаем, получим m1g=(m1+m2)am1g=(m1+m2)a, a=m1m1+m2ga=m1m1+m2g. (2) Тогда из (1) и (2) получаем x=m1m1+m2l=m2m/3+ml=35lx=m1m1+m2l=m2m/3+ml=35l. (3) Подставляя (3) в (1), получаем a=3g/5a=3g/5. (4) Отсюда для силы натяжения получаем T1=T2=m2a=2m335g=25mgT1=T2=m2a=2m335g=25mg. (5) Соотношения (3), (4), (5) дают решение задачи. Источник: https://earthz.ru/solves/Zadacha-po-fizike-4784
Объяснение: