Пустую бутылку при атмосферном давлении 750 мм.рт.ст. закрыли пробкой диаметром 4 см. чтобы определить силу, необходимую для того чтобы эту пробку вытащить, бутылку поместили под колокол, из которого стали откачивать воздух. Когда давление под колоколом стало 160 мм.рт.ст., пробка была вытолкнута из бутылки. Какая сила понадобилась для этого?
1.Найдите:
А) Амплитуду колебаний заряда.
В общем виде уравнение колебаний заряда q=qm*cos(ωt). Cопоставляя получаем qm=5*10^-4 Кл.
Б) Период. ω= 10^3π. Из ω = 2π/T, T=2π/ω=2π/(10^3π)=2*10^-3 c.
В) Частоту. Из υ=1/T, υ=1/(2*10^-3) =0,5*10^3 Гц= 500 Гц.
Г) Циклическую частоту. ω= 10^3π Гц= 3140 Гц.
2. Запишите уравнения зависимости напряжения на конденсаторе от времени:
Из формулы емкости конденсатора С=q/U имеем
u(t) = q(t)/C =
(5*10^-4cos(10^3πt))/(10*10^-12) = 0,5*10^8 cos(10^3πt):
и силы тока в контуре от времени: в общем виде i(t) =q(t) '=Imcos(ωt+π/2) - ток опережает колебания напряжения на конденсаторе на π/2, Im=ω*qm; Im=10^3π*5*10^-4=1,57 A.
Значит i(t) =1,57cos(10^3πt+π/2).
Vср = S / t.
Рассмотрим первую половину пути:
S₁ = (S/2)
t₁ = S₁/V₁ = S / (2*V₁) = S / 20 = (1/20)*S = 0,05*S ч
Рассмотрим вторую половину пути.
Оставшийся путь
S₂ = (S/2)
Оставшееся время t₂ разобьем на 3 равных промежутка по (t₂ /3) часа
Путь на первой трети остатка:
S₂₁ = V₂₁*(t₂/3) = (20/3)*t₂
Путь на второй трети остатка:
S₂₂ = 0 (ремонт!)
Путь на последней трети остатка:
S₂₃ = V₂₃*(t₂/3) = (5/3)*t₂
Собираем
S₂ = S₂₁+S₂₂+S₂₃ = (20/3)*t₂ + 0 + (5/3)*t₂ = (25/3)*t₂
(S/2) = (25/3)*t₂
t₂ = (3/50)*S = 0,06*S ч
Общее время:
t = t₁ +t₂ = 0,05*S + 0,06*S = 0,11*S
Средняя скорость:
Vcp = S / (0,11*S) = 1 / 0,11 ≈ 9 км/ч