Рассчитай, на какую максимальную высоту можно поднять глицерин поршневым насосом при нормальном атмосферном давлении =101300 Па. Плотность жидкости ρ=1260кг/м3, ≈10Н/кг).
Ну что, Татьяна, давай рассуждать логически. Ща сам тоже буду думать, пока пишу. По ходу скорость платформ из 9 км/ч переведём в 2,5 м/с.
Давай предположим, что сначала платформа двигалась вправо (в направлении на "+"), и если верно понимаю условие, выстрел был сделан в эту же сторону, то есть вправо, так?
Сначала посчитаем начальный импульс платформы со снарядом. Это будет p0 = (М+м)*v1. После того, как выстрел сделан, масса платформы стала без снаряда, то есть просто М; а снаряд унёс с неё импульс m*v2.
По закону сохранения импульса, новый импульс платформы станет p2 = p0 - m*v2. Соберём в кучку, будет p2 = (M+m)*v1 - m*v2. Расшифруем, будет p2 = M*v1 + m*v1 - m*v2. Подставим соотношение М/м = 200, и получим p2 = М*v1 + M/200*v1 - M/200*v2 = M * ( v1 + 1/200*v1 - 1/200*v2) = M * ( 2,5 + 1/200*2,5 - 1/200*800). У меня получилось M * (-1,4875). Внезапно знак стал минус, это означает, что платформа после выстрела поехала в обратную сторону. А её скорость равна как раз найденный импульс, делить на массу, то есть именно v = -1,4875 м/с.
Есть ответ на первый вопрос. Перейдём ко второму. Тут надо найти силу трения, а она равна весу платформы, умножить на коэфф.трения. Fтр = М * g * мю.
Итак, платформа поехала влево с начальной скоростью v, и на неё действует постоянная сила Fтр, значит движение имеет постоянное отрицательное ускорение а = Fтр / М = (М * g * мю ) / М = g * мю.
Остался последний шаг - подставляем в формулу "без времени" s = v^2 / (2 * a ) = (1,4875)^2 / (2 * g * мю ) = 1,4875^2 / (2*9,81*0,07) = 1,611 м. Точнее, если с учётом знака (платформа-то едет влево), то расстояние s = -1,611 м.
Ну, у меня так получилось. Проверь. Может где ошибся.
Теперь вычислим относительную погрешность измерения g:
ε g = ε L + 2*ε pi + 2*ε t ср.
ε pi - это погрешность округления Пи (= | (3,14 - 3,14159)/3,14 | *100% = 0,051%), ею можно пренебречь, т.к. в расчётах использовалось округлённое значение 3,14, тогда:
ε g = ε L + 2*ε t ср. = 0,002 + 0,2 = 0,202
Определим абсолютную погрешность Δg:
Δg = ε g * g cp. = 0,202 * 10,18 = 2,06
g cp. - Δg ≤ g ≤ g cp. + Δg
10,18 - 2,06 ≤ 9,8 ≤ 10,18 + 2,06
8,12 ≤ 9,8 ≤ 12,24
Известное значение ускорения свободного падения входит в интервал, значит всё ок. Измерения сделали нормальные.)
Давай предположим, что сначала платформа двигалась вправо (в направлении на "+"), и если верно понимаю условие, выстрел был сделан в эту же сторону, то есть вправо, так?
Сначала посчитаем начальный импульс платформы со снарядом. Это будет p0 = (М+м)*v1. После того, как выстрел сделан, масса платформы стала без снаряда, то есть просто М; а снаряд унёс с неё импульс m*v2.
По закону сохранения импульса, новый импульс платформы станет p2 = p0 - m*v2. Соберём в кучку, будет p2 = (M+m)*v1 - m*v2. Расшифруем, будет p2 = M*v1 + m*v1 - m*v2. Подставим соотношение М/м = 200, и получим p2 = М*v1 + M/200*v1 - M/200*v2 = M * ( v1 + 1/200*v1 - 1/200*v2) = M * ( 2,5 + 1/200*2,5 - 1/200*800). У меня получилось M * (-1,4875). Внезапно знак стал минус, это означает, что платформа после выстрела поехала в обратную сторону. А её скорость равна как раз найденный импульс, делить на массу, то есть именно v = -1,4875 м/с.
Есть ответ на первый вопрос. Перейдём ко второму. Тут надо найти силу трения, а она равна весу платформы, умножить на коэфф.трения. Fтр = М * g * мю.
Итак, платформа поехала влево с начальной скоростью v, и на неё действует постоянная сила Fтр, значит движение имеет постоянное отрицательное ускорение а = Fтр / М = (М * g * мю ) / М = g * мю.
Остался последний шаг - подставляем в формулу "без времени" s = v^2 / (2 * a ) = (1,4875)^2 / (2 * g * мю ) = 1,4875^2 / (2*9,81*0,07) = 1,611 м. Точнее, если с учётом знака (платформа-то едет влево), то расстояние s = -1,611 м.
Ну, у меня так получилось. Проверь. Может где ошибся.
Найдём среднее время:
t ср. = (t1 + t2 + t3 + t4 + t5 + t6) / n = 34,26 + 34,31 + 34,31 + 34,15 + 34,38 + 34,41) / 6 = 34,3 с
Расчёты для абсолютной погрешности Δt:
Δt = | t - t ср. |
Δt1 = | t1 - t ср. | = | 34,26 - 34,3 | = 0,04
Δt2 = | t2 - t ср. | = | 34,31 - 34,3 | = 0,01
Δt3 = | t3 - t ср. | = | 34,31 - 34,3 | = 0,01
Δt4 = | t4 - t ср. | = | 34,15 - 34,3 | = 0,15
Δt5 = | t5 - t ср. | = | 34,38 - 34,3 | = 0,08
Δt6 = | t6 - t ср. | = | 34,41 - 34,3 | = 0,11
Определим среднюю абсолютную погрешность Δt cp.:
Δt cр. = (Δt1 + Δt2 + Δt3 + Δt4 + Δt5 + Δt6) / 6 = 0,07
Вычислим среднее ускорение свободного падения, выразив его из равенства периодов:
Т = t/N
T = 2pi*√(L/g ср.)
t ср./N = 2pi*√(L/g ср.)
g ср. = 4pi²*(L*N²)/t²cр. = 4*3,14²*(0,759*20²)/34,3² = 10,18 м/с²
Далее найдём среднюю относительную погрешность времени:
ε t ср. = (Δt cр. / t ср.) * 100% = (0,07 / 34,3) * 100% = 0,2
Вычислим относительную погрешность измерения длины маятника:
ε L = ΔL/L
абсолютная погрешность ΔL = ΔL изм. ленты + ΔL отсчёта = 0,001 + 0,0005 = 0,0015
ε L = ΔL/L = 0,0015 / 0,759 = 0,002
Теперь вычислим относительную погрешность измерения g:
ε g = ε L + 2*ε pi + 2*ε t ср.
ε pi - это погрешность округления Пи (= | (3,14 - 3,14159)/3,14 | *100% = 0,051%), ею можно пренебречь, т.к. в расчётах использовалось округлённое значение 3,14, тогда:
ε g = ε L + 2*ε t ср. = 0,002 + 0,2 = 0,202
Определим абсолютную погрешность Δg:
Δg = ε g * g cp. = 0,202 * 10,18 = 2,06
g cp. - Δg ≤ g ≤ g cp. + Δg
10,18 - 2,06 ≤ 9,8 ≤ 10,18 + 2,06
8,12 ≤ 9,8 ≤ 12,24
Известное значение ускорения свободного падения входит в интервал, значит всё ок. Измерения сделали нормальные.)
Вот как-то так.