решить задачу
К клеммам источника постоянного напряжения подключены две параллельно соединённые проволоки одинаковой длины и одинаковой площади поперечного сечения. Первая проволока железная, вторая — из нихрома. Известно, что через некоторое время после замыкания ключа железная проволока нагрелась на t1=60 С.Определить изменение температуры нихромовой проволоки t2.ответ выразить в С
округлив до целых. Удельные сопротивления железа и нихрома равны
p1=0,1 Ом*мм^2/м и p2=1.1 Ом*мм^2/м соответственно. Плотности железа и нихрома равны 7800 кг/м^3 и 8500 кг/м^3
соответственно. Удельные теплоёмкости железа и нихрома считать равными. Потерями теплоты пренебречь.
Объяснение:
Задание. Исследовать скатывание цилиндров и шара по наклонной плоскости.
Примечание: если цилиндр или шар скатывается по наклонной плоскости, расположенной под небольшим углом к горизонту, то скатывание происходит без проскальзывания. Если угол наклона плоскости превысит некоторое предельное значение, то скатывание будет происходить с проскальзыванием.
При выполнении задания необходимо определить тот предельный угол, при котором скатывание тел начнет происходить с проскальзыванием. По результатам исследования составить отчет, в котором отразить методику исследования, предоставить таблицу результатов наблюдений и дать объяснение, почему при угле, превышающем некоторое значение, скатывание тел происходит с проскальзыванием.
Кроме того, в задачу входит определение момента инерции цилиндров и шара no результатам наблюдений скатывания их с наклонной плоскости.
Краткая теория
Положим, цилиндр катится по наклонной плоскости без скольжения. На цилиндр действуют внешние силы: сила тяжести , сила трения , и сила реакции со стороны плоскости . Движение рассматриваем как поступательное со скоростью, равной скорости центра масс, и вращательное относительно оси, проходящей через центр масс.
Уравнение для движения центра масс шара (цилиндра)
или в скалярном виде в проекциях:
на ось OX: .
на ось ОУ:
Уравнение моментов относительно оси
.
При отсутствии проскальзывания
.
Найдем ускорение, которое приобретает цилиндр под действием указанных сил. Оно может быть найдено путем использования выражения для кинетической энергии катящегося тела
, (1)
где - масса шара (цилиндра), - скорость поступательного движения центра масс, - момент инерции шара, относительно оси вращения, - угловая скорость вращения, относительно оси вращения.
Изменение кинетической энергии тела равно работе внешних сил, действующих на тело. Элементарная работа силы трения и реакции, плоскости равна нулю, т.к. линии действия их проходят через мгновенную ось вращения ( ). Следовательно, изменение кинетической энергии тела происходит только за счёт работы силы тяжести
(2)
или проинтегрировав выражение (2) в пределах от до , получим,
где - кинетическая энергия тела в конце наклонной плоскости, - начальная энергия (кинетическая) тела, ; - длина наклонной плоскости, тогда энергия тела
, (3)
откуда
. (4)
Поступательное движение тела по наклонной плоскости происходит равноускоренно, поэтому можно записать
, (5)
где - конечная скорость центра масс в конце наклонной плоскости, - начальная скорость, она равна нулю, поэтому
, (6)
так как
(7)
Выражение (4) с учетом (6) и (7) может быть записано
, (8)
где – ускорение поступательного движения тела при скатывании по наклонной плоскости.
Так как это равноускоренное движение с начальной скоростью , то можно записать или , подставляя значение а в (8) окончательно получим
, (9)
где - время скатывания тела по наклонной плоскости, - радиус шара (цилиндра), - масса шара (цилиндра), - угол наклона плоскости к горизонту, - длина наклонной плоскости.
Измерив указанные выше величины, можно вычислить момент инерции скатывающегося цилиндра. Он может быть сплошным, пустотелым, с канавками на его образующей поверхности и т.д. Формула (9): справедлива и для цилиндров и для шара.
Эксперимент с каждым из тел проводить не менее трех раз. Результаты наблюдений и вычислений занести в таблицу 1.
Таблица 1
№ п/п Форма скатывающегося тела Масса , кг Радиус , м Длина наклонной плоскости (м) Время скатывания, с Момент инерции , кг·м2

1
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ

katerrinary2003
04.01.2019
Математика
5 - 9 классы
+5 б.
ответ дан
Менша основа рівнобічної трапеції дорівнює 8 см. Точка перетину діагоналей трапецї віддалена від основ на 2 см і 3 см. Знайдіть площу трапецї.
1
СМОТРЕТЬ ОТВЕТ

Меньшая основа равносторонней трапеции равна 8 см. Точка пересечения диагоналей отдалена от основ на 2 см и 3 см. Найдите площадь трапеции.
Войди чтобы добавить комментарий
ответ, проверенный экспертом
4,0/5
30

KuOV
главный мозг
4.8 тыс. ответов
10 млн пользователей, получивших
ответ: 50 см²
Пошаговое объяснение:
О - точка пересечения диагоналей.
Расстояние от точки О до оснований - длины перпендикуляров, проведенных из О к основаниям:
ОК = 2 см, ОН = 3 см.
Тогда КН = 5 см - высота трапеции.
∠СВО = ∠АDО как накрест лежащие при пересечении параллельных прямых AD и ВС секущей AD,
∠СОВ = ∠AOD как вертикальные, значит
ΔСОВ ~ ΔAOD по двум углам.
В подобных треугольниках отношение высот, проведенных к соответствующим сторонам, равно коэффициенту подобия, значит


 см
 см²