В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
PavelKyiv
PavelKyiv
21.04.2022 08:10 •  Физика

-
- -
ришин - спис доличественные задачи.
Задача 1. Три резистора сопротивлениями Ri, R, R, соединены последовательно
так, что (общее сопротивление данного участка цсии составляет R. а значення напряження
на резисторах и силы ока в них равны U L , U1 и I, , I, соответственно. Определите
значення величин, обозначенных к?». . . . .
-
-
-
като не се
на
пі
-
Етна
alls
4
5
6
НЕНЕ
-
Вариант 1
R, кОм 2
RaKOM ?
| R.KOM 6
R, кОм 10
9
10
Н
12
30
7
| 15.
2
2
15
8
| 32
47
2
10.5
Е»
?
U, В
Ua, B
I, MA
| b. м
1 мА
2
У
2
?
?
?
?
?
5
- 12
?
?
?
.
.
.​

Показать ответ
Ответ:
ilyacher123
ilyacher123
25.12.2020 23:23
Дано
р=10 в степени (-10) Кл*м
r=10 см
Найти
U-?
Решение
Диполь точечный и его размерами можно пренебречь. Тогда напряженность поля на расстоянии rот центра диполя до его оси равна
E=2*p\4*pi*E0*r^3=p\2*pi*E0*r^3
Потенциал равен 
φ=интеграл E*dr
φ=интеграл (р*dr\2*pi*E0*r^3) = - (p\4*pi*E0*r^2) +C
C это константа интегрирование,ее можно приравнять нулю и  тогда на бесконечности потенциала будет тоже ноль. 
Следовательно искомая разность потенциалов равна
U=2*φ
U=2*p\4*pi*E0*r^2=p\2*pi*E0*r^2
Тогда
U=10 в степени (-10) \2*3,14*8,85*10 в степени (-12)*(0,1) в квадрате =
= 10 в степени (-10) \0,55578*10 в степени (-12)=18*10 в степени(-10)*10 в степени (+12) =18*10 в степени (-10+12) =18*10 в степени (+2) =18*100=1800 (В)
ответ (U=1800 В)
Решение верное,только проблема в некорректности цифры момента диполя.
0,0(0 оценок)
Ответ:
edemka17042006
edemka17042006
09.07.2020 14:19
Шаг 1. Выясняем резонансные частоты.
Колебательный контур описывается линейным дифференциальным уравнением второго порядка:
q'' + 2 \gamma q' + \omega_0^2 q = e(t), полученным из уравнения Кирхгофа введением обозначений: \gamma = \frac{R}{2L}\omega_0 = \frac{1}{ \sqrt{LC}}. Для выяснения резонансной частоты возьмем вынуждающую силу, изменяющуюся по закону косинуса. e(t) = \frac{E_0}{L} cos(\omega t).
Решение данного уравнения, согласно теории д.у., имеет вид:
q = Ae^{-\gamma t}cos(w_c t + \phi) + B cos(\omega t + \psi), где первое слагаемое - решение с.о.у. (оно затухает и нас не интересует), а второе - произвольное частное решение, которое ищется в указанном виде (в силу особенностей взятой вынуждающей силы). Подставим решение q=B cos(\omega t + \psi) в уравнение и (с например, векторной диаграммы) получим B = \frac{E_0}{L} \frac{1}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4 \gamma^2 \omega^2}}.
Зная, что I(t) = q'(t) = - B \omega sin(\omega t +\psi) и U(t) = \frac{q(t)}{C}. Получаем для амплитуды тока и напряжений следующие выражения: U = \frac{E_0}{LC \sqrt{(\omega_0^2 - \omega^2)^2 + 4 \gamma^2 \omega^2}} и I = \frac{E_0 \omega}{LC \omega \sqrt{((\frac{\omega_0}{\omega})^2 - 1)^2 + 4\gamma^2}} = \frac{E_0}{LC \sqrt{((\frac{\omega_0}{\omega})^2 - 1)^2 + 4\gamma^2}}.
Таким образом, решая квадратные уравнения в знаменателях, можно понять, что наибольшая амплитуда (резонанс) у напряжения достигается при частоте \omega_u = \sqrt{\omega_0^2 - 2\gamma^2}, а у тока при \omega_i = \omega_0.
Шаг 2. Что такое добротность
Как было написано ранее, за затухание собственных колебаний системы отвечает слагаемое q = Ae^{-\gamma t}cos(w_c t + \phi)[\tex] Условились считать, что колебание затухло, если его амплитуда уменьшилась в e раз. Очевидно, что это произойдёт за время [tex]\tau = \frac{1}{\gamma}. За это время система совершила N = \frac{\tau}{T_c} = \frac{\omega_c}{2 \pi \gamma} колебаний, где \omega_c = \sqrt{\omega_0^2 - \gamma^2} - собственная частота колебаний системы (следует из решения д.у.). Так вот, величина Q = \pi N = \frac{\omega_c}{2 \gamma} называется добротностью контура.
Шаг 3. Накладываем ограничения
\frac{\omega_0 - \sqrt{\omega_0^2 - 2\gamma^2} }{\sqrt{\omega_0^2 - 2\gamma^2}} \leq 0.01
Решая это неравенство получаем: \frac{\gamma^2}{\omega_0^2} \leq 0.009851975, отсюда \frac{\omega_0}{2\gamma} \geq 5.04
Шаг 4. Находим добротность
Вообще говоря, Q = \frac{\omega_c}{2 \gamma} и \frac{\omega_0}{2\gamma}[\tex] разные величины, поэтому оценим погрешность, что бы приравнять их с чистой совестью)))) Для этого разложим выражение для добротности, с учётом определения частоты собственных колебаний по формуле Маклорена (в ряд). [tex]Q = \frac{ \sqrt{\omega_0^2 - \gamma^2}}{2\gamma} = \frac{\omega_0}{2\gamma} \sqrt{1 - \frac{\gamma^2}{\omega_0^2}} = \frac{\omega_0}{2\gamma} ( 1 - \frac{\gamma^2}{2\omega_0^2} + o(\frac{\gamma^2}{\omega_0^2})) = \frac{\omega_0}{2\gamma} - \frac{\gamma}{4\omega_0} + o(\frac{\gamma}{\omega_0}). Таким образом, отличие истинного решения от полученного примерно 0.03.
ответ:Q \ \textgreater \ 5

P.S. Что касается погрешности, то в принципе если повозиться, то, наверное, можно найти результат более точно, но это потребует лишней возни с алгеброй, которую я недолюбливаю.
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота