q = 5*10^-4cos(10^3πt), С= 10 пФ = 10*10^-12 Ф. 1.Найдите: А) Амплитуду колебаний заряда. В общем виде уравнение колебаний заряда q=qm*cos(ωt). Cопоставляя получаем qm=5*10^-4 Кл. Б) Период. ω= 10^3π. Из ω = 2π/T, T=2π/ω=2π/(10^3π)=2*10^-3 c. В) Частоту. Из υ=1/T, υ=1/(2*10^-3) =0,5*10^3 Гц= 500 Гц. Г) Циклическую частоту. ω= 10^3π Гц= 3140 Гц.
2. Запишите уравнения зависимости напряжения на конденсаторе от времени: Из формулы емкости конденсатора С=q/U имеем u(t) = q(t)/C = (5*10^-4cos(10^3πt))/(10*10^-12) = 0,5*10^8 cos(10^3πt):
и силы тока в контуре от времени: в общем виде i(t) =q(t) '=Imcos(ωt+π/2) - ток опережает колебания напряжения на конденсаторе на π/2, Im=ω*qm; Im=10^3π*5*10^-4=1,57 A. Значит i(t) =1,57cos(10^3πt+π/2).
t ≈ -5.36°C
Объяснение:
С = 1,5 кДж/°С = 1500 Дж/°С
t₁ = 20°С
m₁ = 100 г = 0,1 кг
t₂ = -30°С
λ₁ = 3.4⋅10⁵ Дж/кг
с₁ = 2100 Дж/(кг·°С)
с₂ = 4200 Дж/(кг·°С)
t - ? - температура установившегося теплового равновесия
Энергия, затраченная на нагревание льда до температуры плавления
Q₁ = c₁ · m₁ · (0 - t₂) = 2100 · 0.1 · 30 = 6 300 (Дж)
Энергия, затраченная на таяние льда
Q₂ = λ₁ · m₁ = 340 000 · 0.1 = 34 000 (Дж)
Энергия, затраченная на нагревание воды, получившейся изо льда
Q₃ = c₂ · m₁ · (t - 0) =4200 · 0.1 · t = 420t₃
Энергия, отданная сосудом с водой при охлаждении
Q₄ = C · (t₁ - t₃) = 1500 · (20 - t) = 30 000 - 1500 t
Уравнение теплового баланса
Q₁ + Q₂ + Q₃ = Q₄
6 300 + 34 000 + 420 t = 30 000 - 1500 t
1920 t = -10 300
t ≈ -5.36°C
1.Найдите:
А) Амплитуду колебаний заряда.
В общем виде уравнение колебаний заряда q=qm*cos(ωt). Cопоставляя получаем qm=5*10^-4 Кл.
Б) Период. ω= 10^3π. Из ω = 2π/T, T=2π/ω=2π/(10^3π)=2*10^-3 c.
В) Частоту. Из υ=1/T, υ=1/(2*10^-3) =0,5*10^3 Гц= 500 Гц.
Г) Циклическую частоту. ω= 10^3π Гц= 3140 Гц.
2. Запишите уравнения зависимости напряжения на конденсаторе от времени:
Из формулы емкости конденсатора С=q/U имеем
u(t) = q(t)/C =
(5*10^-4cos(10^3πt))/(10*10^-12) = 0,5*10^8 cos(10^3πt):
и силы тока в контуре от времени: в общем виде i(t) =q(t) '=Imcos(ωt+π/2) - ток опережает колебания напряжения на конденсаторе на π/2, Im=ω*qm; Im=10^3π*5*10^-4=1,57 A.
Значит i(t) =1,57cos(10^3πt+π/2).