с во по физике : Яблоко весом 200г падает с высоты 6м . А :Найдите кинетическую, потенциальную и полную механическую энергию . Б : Высоту на какой кинетическая энергия равняется потенциальной .
Итак, что у нас происходит. Кусок льда, оказавшись в воде, сначала нагревается до температуры плавления, затем тает. При этом вода в сосуде охлаждается. Коль лед не весь растаял, есть основания полагать, что процесс завершился при температуре 0° С. Тогда вода в сосуде, при охлаждении отдает количество теплоты Q₁: (1) Тут: с₁ - удельная теплоемкость воды 4200 Дж/(кг·К) m₁ - масса воды 1 кг (1л - 1кг) T₀ - начальная температура воды 10°С T₁ - конечная температура воды и льда 0°С
Лед принял количество теплоты Q₂ : (2) Где: с₂ - удельная теплоемкость льда 2060 Дж/(кг·К) m₂ - начальная масса льда T₂ - начальная температура льда -20°С T₁ - конечная температура воды и льда 0°С m₃ - масса растаявшего льда. λ - удельная теплота плавления льда 334*10³ Дж/кг При этом: кг (3)
Составляем уравнение теплового баланса, приравниваем Q₁ и Q₂. При этом, согласно (3) выражаем m₃ через m₂ (4) Теперь из 4 выражаем m₂:
Пра́вила Кирхго́фа (часто в технической литературе ошибочно называются Зако́нами Кирхго́фа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи.
Решения систем линейных уравнений, составленных на основе правил Кирхгофа, позволяют найти все токи и напряжения в электрических цепях постоянного, переменного и квазистационарного тока[1].
Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач в теории электрических цепей и практических расчётов сложных электрических цепей.
Применение правил Кирхгофа к линейной электрической цепи позволяет получить систему линейных уравнений относительно токов или напряжений и, соответственно, при решении этой системы найти значения токов на всех ветвях цепи и все межузловые напряжения.
Сформулированы Густавом Кирхгофом в 1845 году[2].
Название «Правила» корректнее потому, что эти правила не являются фундаментальными законами природы, а вытекают из фундаментальных законов сохранения заряда и безвихревости электростатического поля (третье уравнение Максвелла при неизменном магнитном поле). Эти правила не следует путать с ещё двумя законами Кирхгофа в химии и физике.
Тогда вода в сосуде, при охлаждении отдает количество теплоты Q₁:
(1)
Тут:
с₁ - удельная теплоемкость воды 4200 Дж/(кг·К)
m₁ - масса воды 1 кг (1л - 1кг)
T₀ - начальная температура воды 10°С
T₁ - конечная температура воды и льда 0°С
Лед принял количество теплоты Q₂ :
(2)
Где:
с₂ - удельная теплоемкость льда 2060 Дж/(кг·К)
m₂ - начальная масса льда
T₂ - начальная температура льда -20°С
T₁ - конечная температура воды и льда 0°С
m₃ - масса растаявшего льда.
λ - удельная теплота плавления льда 334*10³ Дж/кг
При этом:
кг (3)
Составляем уравнение теплового баланса, приравниваем Q₁ и Q₂. При этом, согласно (3) выражаем m₃ через m₂
(4)
Теперь из 4 выражаем m₂:
(5)
Подставляя в (5) числовые значения, получаем:
кг
ответ: Исходная масса льда 0,201 кг=201 г.
Пра́вила Кирхго́фа (часто в технической литературе ошибочно называются Зако́нами Кирхго́фа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи.
Решения систем линейных уравнений, составленных на основе правил Кирхгофа, позволяют найти все токи и напряжения в электрических цепях постоянного, переменного и квазистационарного тока[1].
Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач в теории электрических цепей и практических расчётов сложных электрических цепей.
Применение правил Кирхгофа к линейной электрической цепи позволяет получить систему линейных уравнений относительно токов или напряжений и, соответственно, при решении этой системы найти значения токов на всех ветвях цепи и все межузловые напряжения.
Сформулированы Густавом Кирхгофом в 1845 году[2].
Название «Правила» корректнее потому, что эти правила не являются фундаментальными законами природы, а вытекают из фундаментальных законов сохранения заряда и безвихревости электростатического поля (третье уравнение Максвелла при неизменном магнитном поле). Эти правила не следует путать с ещё двумя законами Кирхгофа в химии и физике.