Саша на роликах скатывается с горы с начальной скоростью 2 км/ч. через 5 секунд ее скорость становится 7 км/ч. определите ускорение саши, определите ее скорость через 10 секунд. нарисуйте график зависимости скорости саши от времени.
Си́ла — физическая векторная величина, являющаяся мерой воздействия на данное тело со стороны других тел или полей. Приложение силы обусловливает изменение скорости тела или появление деформаций и механических напряжений. Деформация может возникать как в самом теле, так и в фиксирующих его объектах — например, пружинах.
Воздействие всегда осуществляется посредством полей, создаваемых телами и воспринимаемых рассматриваемым телом. Различные взаимодействия сводятся к четырём фундаментальным; согласно Стандартной модели физики элементарных частиц, эти фундаментальные взаимодействия (слабое, электромагнитное, сильное и, возможно, гравитационное) реализуются путём обмена калибровочными бозонами[1].
Для обозначения силы обычно используется символ F — от лат. fortis (сильный).
Важнейший физический закон, в который входит сила, — второй закон Ньютона. Он гласит, что в инерциальных системах отсчёта ускорение материальной точки по направлению совпадает с приложенной силой, а по модулю пропорционально модулю силы и обратно пропорционально массе материальной точки.
Слово «сила» в русском языке является многозначным и нередко используется (само или в сочетаниях, в науке и обиходных ситуациях) в смыслах, отличных от физического определения термина.
Сила
\ F
Размерность
LMT−2
Единицы измерения
СИ
ньютон
СГС
дина
Примечания
векторная величина
Характеристики силы
Сила является векторной величиной. Она характеризуется модулем, направлением и точкой приложения. Также используют понятие линия действия силы, означающее проходящую через точку приложения силы прямую, вдоль которой направлена сила.
Зависимость силы от расстояния между телами может иметь различный вид, однако, как правило, при больших расстояниях сила стремится к нулю — поэтому отдалением рассматриваемого тела от других тел с хорошей точностью обеспечивается ситуация «отсутствия внешних сил»[2]. Исключения возможны в некоторых задачах космологии, касающихся тёмной энергии[3].
Кроме разделения по типу фундаментальных взаимодействий, существуют иные классификации сил, в том числе: внешние—внутренние (то есть действующие на материальные точки (тела) данной механической системы со стороны материальных точек (тел) не принадлежащих этой системе и силы взаимодействия между материальными точками (телами) данной системы[4]), потенциальные и нет (потенциально ли поле изучаемых сил), упругие—диссипативные, сосредоточенные—распределённые (приложены в одной или многих точках), постоянные или переменные во времени.
При переходе из одной инерциальной системы отсчёта в другую преобразование сил осуществляется так же, как и полей соответствующей природы (например, электромагнитных, если сила электромагнитная). В пределе малых скоростей можно считать силу инвариантом.
Системой сил называется совокупность сил, действующих на рассматриваемое тело или на точки механической системы. Две системы сил называют эквивалентными, если их действие по отдельности на одно и то же твердое тело или материальную точку одинаково при прочих равных условиях[4].
Уравновешенной системой сил (или системой сил, эквивалентной нулю) называется система сил, действие которой на твердое тело или материальную точку не приводит к изменению их кинематического состояния[4].
Размерность силы
Размерность силы в Международной системе величин (англ. International System of Quantities, ISQ), на которой базируется Международная система единиц (СИ), и в системе величин LMT, используемой в качестве основы для системы единиц СГС, — LMT−2. Единицей измерения в СИ является ньютон (русское обозначение: Н; международное: N), в системе СГС — дина (русское обозначение: дин, международное: dyn).
Равнодействующая системы сил
Если к не закреплённому телу приложено несколько сил, то каждая из них сообщает телу такое ускорение, какое она сообщила бы в отсутствие действия других сил. Это утверждение, основанное на опытных фактах, носит название принципа независимости действия сил (принципа суперпозиции). Поэтому при расчёте ускорения тела все действующие на него силы заменяют одной силой, называемой равнодействующей, а именно геометрической суммой всех действующих сил. В частном случае равенства равнодействующей сил нулю ускорение тела также будет нулевым. На этом основано измерение величины исследуемой силы, когда она компенсируется силой, величина которой известна.
Измерение сил
Для измерения сил используются два метода: статический и динамический[5].
Статический метод заключается в уравновешивании измеряемой силы другой силой, значение которой известно. Например, в качестве уравновешивающей силы может выступать сила упругости, возникающая в градуированной пружине, деформированной исследуемой силой. На использовании статического метода основаны приборы, называемые динамометрами.
Вообще-то, второе начало термодинамики, это не универсальный, а статистический закон. Т. е. не "в закрытой системе энтропия НИКОГДА не убывает", а "в подавляющем большинстве случаев, в в закрытой системе энтропия не убывает".
Чисто статистически, есть отличная от нуля вероятность того, что выпущенные из воздушного шарика частицы воздуха самопроизвольно в него же вернутся. Более того, есть доказанная математическая теорема, которая утверждает, что такое обязательно случится. Просто, если речь идёт о количествах частиц порядка 10^20, то ждать такого события придётся в миллиарды миллиардов раз дольше, чем существует вселенная, поэтому, с чисто физической точки зрения, можно утверждать, что этого никогда не произойдёт.
Но, если у нас количество частиц небольшое, например, несколько штук, то законы статистической механики просто не работают. В этом случае, ждать самопроизвольного уменьшения энтропии придётся уже очень намного меньше.
Строго говоря, это тоже не нарушает второе начало термодинамики, т. к. оно тут просто неприменимо.
Ну а в открытых системах может происходить что угодно :)
Си́ла — физическая векторная величина, являющаяся мерой воздействия на данное тело со стороны других тел или полей. Приложение силы обусловливает изменение скорости тела или появление деформаций и механических напряжений. Деформация может возникать как в самом теле, так и в фиксирующих его объектах — например, пружинах.
Воздействие всегда осуществляется посредством полей, создаваемых телами и воспринимаемых рассматриваемым телом. Различные взаимодействия сводятся к четырём фундаментальным; согласно Стандартной модели физики элементарных частиц, эти фундаментальные взаимодействия (слабое, электромагнитное, сильное и, возможно, гравитационное) реализуются путём обмена калибровочными бозонами[1].
Для обозначения силы обычно используется символ F — от лат. fortis (сильный).
Важнейший физический закон, в который входит сила, — второй закон Ньютона. Он гласит, что в инерциальных системах отсчёта ускорение материальной точки по направлению совпадает с приложенной силой, а по модулю пропорционально модулю силы и обратно пропорционально массе материальной точки.
Слово «сила» в русском языке является многозначным и нередко используется (само или в сочетаниях, в науке и обиходных ситуациях) в смыслах, отличных от физического определения термина.
Сила
\ F
Размерность
LMT−2
Единицы измерения
СИ
ньютон
СГС
дина
Примечания
векторная величина
Характеристики силы
Сила является векторной величиной. Она характеризуется модулем, направлением и точкой приложения. Также используют понятие линия действия силы, означающее проходящую через точку приложения силы прямую, вдоль которой направлена сила.
Зависимость силы от расстояния между телами может иметь различный вид, однако, как правило, при больших расстояниях сила стремится к нулю — поэтому отдалением рассматриваемого тела от других тел с хорошей точностью обеспечивается ситуация «отсутствия внешних сил»[2]. Исключения возможны в некоторых задачах космологии, касающихся тёмной энергии[3].
Кроме разделения по типу фундаментальных взаимодействий, существуют иные классификации сил, в том числе: внешние—внутренние (то есть действующие на материальные точки (тела) данной механической системы со стороны материальных точек (тел) не принадлежащих этой системе и силы взаимодействия между материальными точками (телами) данной системы[4]), потенциальные и нет (потенциально ли поле изучаемых сил), упругие—диссипативные, сосредоточенные—распределённые (приложены в одной или многих точках), постоянные или переменные во времени.
При переходе из одной инерциальной системы отсчёта в другую преобразование сил осуществляется так же, как и полей соответствующей природы (например, электромагнитных, если сила электромагнитная). В пределе малых скоростей можно считать силу инвариантом.
Системой сил называется совокупность сил, действующих на рассматриваемое тело или на точки механической системы. Две системы сил называют эквивалентными, если их действие по отдельности на одно и то же твердое тело или материальную точку одинаково при прочих равных условиях[4].
Уравновешенной системой сил (или системой сил, эквивалентной нулю) называется система сил, действие которой на твердое тело или материальную точку не приводит к изменению их кинематического состояния[4].
Размерность силы
Размерность силы в Международной системе величин (англ. International System of Quantities, ISQ), на которой базируется Международная система единиц (СИ), и в системе величин LMT, используемой в качестве основы для системы единиц СГС, — LMT−2. Единицей измерения в СИ является ньютон (русское обозначение: Н; международное: N), в системе СГС — дина (русское обозначение: дин, международное: dyn).
Равнодействующая системы сил
Если к не закреплённому телу приложено несколько сил, то каждая из них сообщает телу такое ускорение, какое она сообщила бы в отсутствие действия других сил. Это утверждение, основанное на опытных фактах, носит название принципа независимости действия сил (принципа суперпозиции). Поэтому при расчёте ускорения тела все действующие на него силы заменяют одной силой, называемой равнодействующей, а именно геометрической суммой всех действующих сил. В частном случае равенства равнодействующей сил нулю ускорение тела также будет нулевым. На этом основано измерение величины исследуемой силы, когда она компенсируется силой, величина которой известна.
Измерение сил
Для измерения сил используются два метода: статический и динамический[5].
Статический метод заключается в уравновешивании измеряемой силы другой силой, значение которой известно. Например, в качестве уравновешивающей силы может выступать сила упругости, возникающая в градуированной пружине, деформированной исследуемой силой. На использовании статического метода основаны приборы, называемые динамометрами.
Вообще-то, второе начало термодинамики, это не универсальный, а статистический закон. Т. е. не "в закрытой системе энтропия НИКОГДА не убывает", а "в подавляющем большинстве случаев, в в закрытой системе энтропия не убывает".
Чисто статистически, есть отличная от нуля вероятность того, что выпущенные из воздушного шарика частицы воздуха самопроизвольно в него же вернутся. Более того, есть доказанная математическая теорема, которая утверждает, что такое обязательно случится. Просто, если речь идёт о количествах частиц порядка 10^20, то ждать такого события придётся в миллиарды миллиардов раз дольше, чем существует вселенная, поэтому, с чисто физической точки зрения, можно утверждать, что этого никогда не произойдёт.
Но, если у нас количество частиц небольшое, например, несколько штук, то законы статистической механики просто не работают. В этом случае, ждать самопроизвольного уменьшения энтропии придётся уже очень намного меньше.
Строго говоря, это тоже не нарушает второе начало термодинамики, т. к. оно тут просто неприменимо.
Ну а в открытых системах может происходить что угодно :)