Молекулярно-кинетическая теория (сокращённо МКТ) — теория, возникшая в XIX веке и рассматривающая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:
все тела состоят из частиц: атомов, молекул и ионов;
частицы находятся в непрерывном хаотическом движении (тепловом);
частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.
МКТ стала одной из самых успешных физических теорий и была подтверждена целым рядом опытных фактов. Основными доказательствами положений МКТ стали:
Диффузия
Броуновское движение
Изменение агрегатных состояний вещества
На основе МКТ развит целый ряд разделов современной физики, в частности, физическая кинетика и статистическая механика. В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения. Термин же молекулярно-кинетическая теория в современной теоретической физике уже практически не используется, хотя он встречается в учебниках по курсу общей физики.
согласно квантовой механике, если над ядром не производится наблюдение, то его состояние описывается суперпозицией (смешением) двух состояний — распавшегося ядра и нераспавшегося ядра, следовательно, кот, сидящий в ящике, и жив, и мёртв одновременно. если же ящик открыть, то экспериментатор может увидеть только какое-нибудь одно конкретное состояние — «ядро распалось, кот мёртв» или «ядро не распалось, кот жив».
вопрос стоит так: когда система перестаёт существовать как смешение двух состояний и выбирает одно конкретное? цель эксперимента — показать, что квантовая механика неполна без некоторых правил, которые указывают, при каких условиях происходит коллапс волновой функции, и кот либо становится мёртвым, либо остаётся живым, но перестаёт быть смешением того и другого.
поскольку ясно, что кот обязательно должен быть либо живым, либо мёртвым (не существует состояния, сочетающего жизнь и смерть), то это будет аналогично и для атомного ядра. оно обязательно должно быть либо распавшимся, либо нераспавшимся.
в крупных комплексных системах, состоящих из многих миллиардов атомов, декогеренция происходит почти мгновенно, и по этой причине кот не может быть одновременно мёртвым и живым на каком-либо измерению отрезке времени. процесс декогеренции является существенной составляющей эксперимента.
оригинальная статья вышла в 1935 году. целью статьи было обсуждение парадокса эйнштейна — подольского — розена (эпр), опубликованного эйнштейном, подольским и розеном ранее в том же году[3]. статьи эпр и шрёдингера обозначили странную природу «квантовой запутанности» (нем. verschränkung, . quantum entanglement, введённый шрёдингером термин), характерной для квантовых состояний, являющихся суперпозицией состояний двух систем (например, двух субатомных частиц).
Молекулярно-кинетическая теория (сокращённо МКТ) — теория, возникшая в XIX веке и рассматривающая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:
все тела состоят из частиц: атомов, молекул и ионов;
частицы находятся в непрерывном хаотическом движении (тепловом);
частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.
МКТ стала одной из самых успешных физических теорий и была подтверждена целым рядом опытных фактов. Основными доказательствами положений МКТ стали:
Диффузия
Броуновское движение
Изменение агрегатных состояний вещества
На основе МКТ развит целый ряд разделов современной физики, в частности, физическая кинетика и статистическая механика. В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения. Термин же молекулярно-кинетическая теория в современной теоретической физике уже практически не используется, хотя он встречается в учебниках по курсу общей физики.
согласно квантовой механике, если над ядром не производится наблюдение, то его состояние описывается суперпозицией (смешением) двух состояний — распавшегося ядра и нераспавшегося ядра, следовательно, кот, сидящий в ящике, и жив, и мёртв одновременно. если же ящик открыть, то экспериментатор может увидеть только какое-нибудь одно конкретное состояние — «ядро распалось, кот мёртв» или «ядро не распалось, кот жив».
вопрос стоит так: когда система перестаёт существовать как смешение двух состояний и выбирает одно конкретное? цель эксперимента — показать, что квантовая механика неполна без некоторых правил, которые указывают, при каких условиях происходит коллапс волновой функции, и кот либо становится мёртвым, либо остаётся живым, но перестаёт быть смешением того и другого.
поскольку ясно, что кот обязательно должен быть либо живым, либо мёртвым (не существует состояния, сочетающего жизнь и смерть), то это будет аналогично и для атомного ядра. оно обязательно должно быть либо распавшимся, либо нераспавшимся.
в крупных комплексных системах, состоящих из многих миллиардов атомов, декогеренция происходит почти мгновенно, и по этой причине кот не может быть одновременно мёртвым и живым на каком-либо измерению отрезке времени. процесс декогеренции является существенной составляющей эксперимента.
оригинальная статья вышла в 1935 году. целью статьи было обсуждение парадокса эйнштейна — подольского — розена (эпр), опубликованного эйнштейном, подольским и розеном ранее в том же году[3]. статьи эпр и шрёдингера обозначили странную природу «квантовой запутанности» (нем. verschränkung, . quantum entanglement, введённый шрёдингером термин), характерной для квантовых состояний, являющихся суперпозицией состояний двух систем (например, двух субатомных частиц).