В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
mangle56
mangle56
06.01.2023 19:55 •  Физика

Сегодня последний день сдачи, УМОЛЯЮ и 3видео на фото

Дослід залежності сили взаємодії наелектризованих тіл від:

3.1. Відстані між зарядженими тілами

1. Уважно перегляньте перший відеофрагмент за вказаним посиланням.

2. Дайте відповідь на запитання:

1.Чи змінюється сила взаємодії заряджених тіл зі зміною відстані між ними?

2.Застосувавши закон Кулона, запишіть відповіді у таблицю № 3 у звіті.

3.2.Величини взаємодіючих зарядів

1. Уважно перегляньте другий і третій відеофрагменти за вказаним посиланням.

2. Дайте відповідь на запитання:

1. Чи змінюється сила взаємодії заряджених тіл зі зміною їх величини?

2.Застосувавши закон Кулона, запишіть відповіді у таблицю № 3 у звіті.


Сегодня последний день сдачи, УМОЛЯЮ и 3видео на фотоДослід залежності сили взаємодії наелектризован
Сегодня последний день сдачи, УМОЛЯЮ и 3видео на фотоДослід залежності сили взаємодії наелектризован

Показать ответ
Ответ:
слав4552
слав4552
04.09.2021 19:30

Для понимания сути процессов, происходящих в диоде при работе в высокочастотных импульсных цепях рассмотрим прохождение через него прямоугольного сигнала (т.е. сигнала с малой длительностью фронта и среза). При этом диод включается по схеме, приведенной на рис. 3.1-1.

 

Рис. 3.1-1. Схема включения диода при рассмотрении переходных процессов

 

В случае, когда входной прямоугольный сигнал является двуполярным, переходные процессы в диоде будут характеризоваться диаграммами, представленными на рис. 3.1-2.

 

Рис. 3.1-2. Переходные процессы в диоде при прохождении через него двуполярного прямоугольного сигнала

 

Для анализа приведенных зависимостей можно воспользоваться выражением для тока диода в переходном режиме:

Iд=Qбτб+dQбdt+CбdUp−ndt ,

где:

Qб — объемный заряд неосновных носителей в области базы диода;τб — время жизни неосновных носителей в области базы;Cб — барьерная емкость перехода;Up−n — напряжение на p-n-переходе диода.

 

Первое слагаемое выражения связано с рекомбинацией неосновных носителей в области базы. Второе слагаемое определяет изменение во времени объемного заряда неосновных носителей в области базы. Третье — обусловлено перезарядом барьерной емкости p-n-перехода при изменении входного сигнала во времени.

Таким образом, основными причинами инерционности заряда являются: эффект накопления избыточного заряда в базовой области прибора и наличие барьерной емкости перехода.

 

Рассмотрим участок времени [t0;t1], когда входное напряжение скачком увеличивается от –Uвхобр до +Uвхпр.

При увеличении прямого тока сопротивление базы диода уменьшается (эффект модуляции сопротивления области базы). Поскольку скорость накопления избыточного заряда в области базы конечна, то установление прямого сопротивления диода требует некоторого времени. Учитывая, что RН≫rдпр, можно показать, что ток диода не зависит от его сопротивления. Поэтому эффект модуляции сопротивления базы приводит к появлению резкого выброса напряжения на диоде при его включении.

Перезаряд барьерной емкости диода Cб, наоборот, ведет к замедлению скорости увеличения напряжения на диоде.

Вследствие действия двух противоположных тенденций реальный вид переходного процесса определяется конкретным соотношением параметров диода. При малых уровнях инжекции превалирующими являются процессы, связанные с перезарядом емкости Cб. При больших уровнях инжекции — процессы, связанные с изменением объемного заряда области базы. Поэтому для диодов различных типов переходные процессы при включении могут иметь качественно отличный вид. На приведенной на рис. 3.1-2 диаграмме представлен случай большого уровня инжекции и соответственно малого влияния Cб.

Длительность всплеска напряжения на диоде τу называется временем установления. Рассчитанное для 1,2Uдпр, оно примерно равно: τу≈2,3tб , а максимальное падение напряжения на диоде:

Uдпрmax≈φк+Iпр⋅rдб,

где:

φк — контактная разность потенциалов,rдб — сопротивление области базы диода.

 

Интервал времени [t1;t2] характеризует установившийся режим в диодном ключе. В базовой области диода накоплен избыточный заряд неосновных носителей Qб=Iпр⋅τб. Концентрация избыточных носителей при этом падает по мере удаления от перехода. Прямой ток, протекающий через диод, равен:

Iпр=Uвхпр–Uдпрrдпр+Rн.

 

В момент времени t2 входное напряжение изменяет свою полярность на обратную. Однако до момента t4 диод будет находиться в проводящем состоянии. До момента t3 через него в обратном направлении будет протекать ток, импульсное значение которого Iобр и соизмеримо с Iпр. Далее, по мере рассасывания объемного заряда неосновных носителей в области базы и разряда барьерной емкости на интервале [t3;t4], обратный ток через диод будет уменьшаться, стремясь к своему установившемуся значению.

0,0(0 оценок)
Ответ:
Kevand
Kevand
28.12.2021 07:20

Для понимания сути процессов, происходящих в диоде при работе в высокочастотных импульсных цепях рассмотрим прохождение через него прямоугольного сигнала (т.е. сигнала с малой длительностью фронта и среза). При этом диод включается по схеме, приведенной на рис. 3.1-1.

 

Рис. 3.1-1. Схема включения диода при рассмотрении переходных процессов

 

В случае, когда входной прямоугольный сигнал является двуполярным, переходные процессы в диоде будут характеризоваться диаграммами, представленными на рис. 3.1-2.

 

Рис. 3.1-2. Переходные процессы в диоде при прохождении через него двуполярного прямоугольного сигнала

 

Для анализа приведенных зависимостей можно воспользоваться выражением для тока диода в переходном режиме:

Iд=Qбτб+dQбdt+CбdUp−ndt ,

где:

Qб — объемный заряд неосновных носителей в области базы диода;τб — время жизни неосновных носителей в области базы;Cб — барьерная емкость перехода;Up−n — напряжение на p-n-переходе диода.

 

Первое слагаемое выражения связано с рекомбинацией неосновных носителей в области базы. Второе слагаемое определяет изменение во времени объемного заряда неосновных носителей в области базы. Третье — обусловлено перезарядом барьерной емкости p-n-перехода при изменении входного сигнала во времени.

Таким образом, основными причинами инерционности заряда являются: эффект накопления избыточного заряда в базовой области прибора и наличие барьерной емкости перехода.

 

Рассмотрим участок времени [t0;t1], когда входное напряжение скачком увеличивается от –Uвхобр до +Uвхпр.

При увеличении прямого тока сопротивление базы диода уменьшается (эффект модуляции сопротивления области базы). Поскольку скорость накопления избыточного заряда в области базы конечна, то установление прямого сопротивления диода требует некоторого времени. Учитывая, что RН≫rдпр, можно показать, что ток диода не зависит от его сопротивления. Поэтому эффект модуляции сопротивления базы приводит к появлению резкого выброса напряжения на диоде при его включении.

Перезаряд барьерной емкости диода Cб, наоборот, ведет к замедлению скорости увеличения напряжения на диоде.

Вследствие действия двух противоположных тенденций реальный вид переходного процесса определяется конкретным соотношением параметров диода. При малых уровнях инжекции превалирующими являются процессы, связанные с перезарядом емкости Cб. При больших уровнях инжекции — процессы, связанные с изменением объемного заряда области базы. Поэтому для диодов различных типов переходные процессы при включении могут иметь качественно отличный вид. На приведенной на рис. 3.1-2 диаграмме представлен случай большого уровня инжекции и соответственно малого влияния Cб.

Длительность всплеска напряжения на диоде τу называется временем установления. Рассчитанное для 1,2Uдпр, оно примерно равно: τу≈2,3tб , а максимальное падение напряжения на диоде:

Uдпрmax≈φк+Iпр⋅rдб,

где:

φк — контактная разность потенциалов,rдб — сопротивление области базы диода.

 

Интервал времени [t1;t2] характеризует установившийся режим в диодном ключе. В базовой области диода накоплен избыточный заряд неосновных носителей Qб=Iпр⋅τб. Концентрация избыточных носителей при этом падает по мере удаления от перехода. Прямой ток, протекающий через диод, равен:

Iпр=Uвхпр–Uдпрrдпр+Rн.

 

В момент времени t2 входное напряжение изменяет свою полярность на обратную. Однако до момента t4 диод будет находиться в проводящем состоянии. До момента t3 через него в обратном направлении будет протекать ток, импульсное значение которого Iобр и соизмеримо с Iпр. Далее, по мере рассасывания объемного заряда неосновных носителей в области базы и разряда барьерной емкости на интервале [t3;t4], обратный ток через диод будет уменьшаться, стремясь к своему установившемуся значению.

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота