Школьники отправились на автобусе из села в город. автобус ехал со скоростью 70 км/ч. пошёл дождь, и водитель автобуса снизил скорость до 60 км/ч. когда дождь кончился, до города оставалось проехать 40 км. автобус поехал со скоростью 75 км/ч и въехал в город в точно запланированное время. сколько минут шёл дождь? для считайте, что автобус в пути не останавливается.
Вообще-то к физике задача имеет отдалённое отношение, это чистая алгебра ;-)
Очевидно, что плановое время прибытия рассчитывалось исходя из первоначальной скорости u1.
Общее расстояние от Ясной поляны до Владимира равно сумме трёх расстояний: которое автобусы проехали до дождя, во время дождя и после дождя, т. е. оно равно
L = u1•t1 + u2•t2 + s (км).
Плановое время прибытия, соответственно, равно L/u1. А фактическое время равно T = t1 + t2 + s/u3. По условию эти времена равны:
(1) (u1•t1 + u2•t2 + 40)/u1 = t1 + t2 + s/u3,
откуда сразу видно, что средняя скорость, равная, по определнию, L/T, равна u1 — это ответ на второй вопрос задачи. (Если вдуматься, это можно было записать и сразу как условие прибытия автобусов вовремя.)
Решаем уравнение (1):
t1 + t2•(u2/u1) + s/u1 = t1 + t2 + s/u3
После несложных преобразований получаем, что время, пока шёл дождь, составило
t2 = (s/u3)•(u3−u1)/(u1−u2),
или, подставляя численные значения:
t2 = (40/75)•(75−70)/(70−60) = 4/15 (ч) = 16 мин.
ОТВЕТ: дождь шёл 16 минут; средняя скорость равна первоначальной скорости u1 = 70 км/ч.