10. установка для наблюдения колец ньютона освещается нормально монохроматическим светом (λ = 590 нм). радиус кривизны r линзы равен 5 см. определить толщину δ воздушного промежутка в том месте, где в отраженном свете наблюдается третье светлое кольцо.520. расстояние между штрихами дифракционной решетки d = 4 мкм. на решетку падает нормально свет с длиной волны λ = 0,58 мкм. максимум какого наибольшего порядка дает эта решетка?530. пучок света падает на плоскопараллельную стеклянную пластину, нижняя поверхность которой находится в воде. при каком угле падения α свет, отраженный от границы стекловода, будет максимально поляризован?540. релятивистский протон обладал кинетической энергией, равной энергии покоя. определить, во сколько раз возрастет его кинетическая энергия, если его импульс увеличится в n = 2 раза. решение:так как протон двигается со скоростью близкой к скорости света необходимо пользоваться релятивистскими формулами для нахождения импульса и энергии частицы. так как масса протона в состоянии покоя m0=1,67×10-27кг, то импульс равен. кинетическая энергия для релятивистской частицы равна. откуда, и, поэтому отсюда находим энергию. аналогично имеем. подставляем и получаем. так как, то. то есть энергия увеличится в раз.550. средняя энергетическая светимость r поверхности земли равна 0,54 дж/(см2×мин). какова должна быть температура т поверхности земли, если условно считать, что она излучает как серое тело с коэффициентом черноты α=0,25?560. на цинковую пластину направлен монохроматический пучок света. фототок прекращается при задерживающей разности потенциалов u= 1,5 в. определить длину волны λ света, на пластину.570. определить импульс pe электрона отдачи, если фотон с энергией εф = 1,53 мэв в результате рассеяния на свободном электроне потерял 1/3 своей энергии.580. точечный источник монохроматического (λ = 1 нм) излучения находится в центре сферической зачерненной колбы радиусом r = 10 см. определить световое давление p, производимое на внутреннюю поверхность колбы, если мощность источника w = 1 квт
Объяснение:
Высота подъема ракеты:
H₁ = a·t²/2 или
H₁ = 2t² (1)
Координата x снаряда:
x = t·V₀·cos α
Считая x = L = 9 000 м
имеем:
cos α = 9000 / (400·t)
cos α = 9000 / (400·t) = 22,5 / t
sin α = √ (1 - (22,5/t)²) = √ (1 - 500/t²)
Координата Y снаряда:
Y = t·V₀·sinα - gt²/2 = t·400·√ (1 - 500/t²) - 5·t² (2)
Приравняем (2) и (1)
t·400·√ (1 - 500/t²) - 5·t² = 2t²
400·√ (1 - 500/t²) = 7·t
Отсюда: снаряд попадет в ракету через:
t = 25 c
Тогда угол:
cos α =22,5 / t = 22,5/25 = 0,9
α = 25°