Задача очень простая, на умение записывать уравнения движения тел в соответствующих осях. Рисунок для решения мы приводим справа, для его увеличения нажмите на него.
Запишем уравнения движения тела по оси y:
y=v0sinα⋅t—gt22 Заменяя в уравнении y на данное h, получим квадратное уравнения, которое необходимо решить для нахождения времени полета. Неудивительно, что уравнение имеет 2 корня, поскольку на данной высоте тело за все время полета будет находиться 2 раза, что видно из рисунка.
1667e-6/eps0 = 2pi*0.05*E в когерентных единицах СИ, если не ошибся.
Идея такая:
Суем нить наиболее симметричным образом в цилиндр, поверхность которого проходит через рассматриваемую точку, после чего пользуемся теоремой Гаусса.
Объяснение:
Т.е. для кругового цилиндра с осью по нити у тебя получится типа E*площадь боковой поверхности = Q внутри / eps0, в одной части поток напряженности через замкн. поверхность, в другой части заряд внутри нее, eps0 коэффициент пропорциональности (он называется электрической постоянной, он еще внутри "k" в законе Кулона "торчит"
Запишем уравнения движения тела по оси y:
y=v0sinα⋅t—gt22
Заменяя в уравнении y на данное h, получим квадратное уравнения, которое необходимо решить для нахождения времени полета. Неудивительно, что уравнение имеет 2 корня, поскольку на данной высоте тело за все время полета будет находиться 2 раза, что видно из рисунка.
h=v0sinα⋅t—gt22
gt2—2v0sinα⋅t+2h=0
Найдем дискриминант:
D=4v20sin2α—8gh
Проверять положительность дискриминанта не будем, поскольку решение задачи быть должно, значит он априори неотрицателен.
Тогда корни квадратного уравнения равны:
t=2v0sinα±4v20sin2α—8gh−−−−−−−−−−−−√2g
Мы получили ответ в общем виде. Теперь подставим все известные величины в СИ:
t=2⋅10⋅sin30∘±4⋅102⋅sin230∘—8⋅10⋅1,05−−−−−−−−−−−−−−−−−−−−−−−√2⋅10
Получаем два корня:
[t=0,7сt=0,3с
1667e-6/eps0 = 2pi*0.05*E в когерентных единицах СИ, если не ошибся.
Идея такая:
Суем нить наиболее симметричным образом в цилиндр, поверхность которого проходит через рассматриваемую точку, после чего пользуемся теоремой Гаусса.
Объяснение:
Т.е. для кругового цилиндра с осью по нити у тебя получится типа E*площадь боковой поверхности = Q внутри / eps0, в одной части поток напряженности через замкн. поверхность, в другой части заряд внутри нее, eps0 коэффициент пропорциональности (он называется электрической постоянной, он еще внутри "k" в законе Кулона "торчит"