В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
красав4ик007
красав4ик007
29.11.2020 16:19 •  Физика

Сопротивление электрического чайника R= 24 Ом. Определите его мощность при включении в сеть с напряжением 220 Вольт.

Показать ответ
Ответ:
andreewnamap0c5nx
andreewnamap0c5nx
08.07.2021 05:26
Посмотрев на таблицу менделеева, мы видим, что онаначинается водородом, а кончается ураном. начинается с легких элементов,кончается тяжелыми. есть еще другой способ освобождения и энергии. этот путь основан на преобразовании ядер легкихэлементов, расположенных в начале таблицы менделеева. только энергия,выделяющаяся при этих преобразованиях, называется не ядерной, а термоядерной.приставка термо определяет способ освобождения этойэнергии. термос по-гречески означает тепло. термоядерная энергия этоэнергия, получаемая при тепла. оказывается, если два ядра атомов легких элементов сблизитьмежду собой вплотную, то между ними произойдет ядерная реакция. в результатеэтой реакции из двух легких ядер образуется более тяжелое ядро и выделяетсяэнергия причем этой энергии на единицу массы выделяется значительно больше,чем при делении тяжелых ядер.такая ядерная реакция называется реакцией синтеза т.е. слияния , а энергия энергией синтеза ядер. это и есть термоядернаяэнергия. для выделения заметной энергии нужно, чтобы термоядернаяреакция происходила во всем объеме вещества. и чтоб разогнать все ядра веществанадо воспользоваться нагреванием. ведь при нагревании тела скорость движенияатомов следовательно, и ядер увеличивается. значит, если нагреть вещество,состоящее из ядер легких элементов, до достаточно высокой температуры, тоначнется термоядерная реакция. энергии, выделяющейся при этой реакции, хватит идля поддержания реакции, и для полезного использования. а энергия выделитсяогромная. если при делении одного грамма урана выделяется энергия,эквивалентная энергии, получаемой при сгорании двух с половиной тонн угля, топри синтезе одного грамма легких ядер выделится энергия, эквивалентная энергииуже десятков тонн каменного угля. чтобы реакция пошла достаточно интенсивно нужны десяткимиллионовградусов, а достигнутые в технике температуры малы. они не  превышают пяти-шести тысяч градусов. но в 1950 г. двое советских ученых академики сахаров и  тамм впервые предложили один из способов получения сверхвысоких температур в  земных условиях. их идея заключалась в том, чтобы через плазму пропускать  электрический ток большой силы в десятки тысяч ампер. пропускать такой  ток можно только импульсами длительностью в доли секунды.ведь никакие  проводники не выдержат такого тока, они сразу расплавятся. но в момент  пропускания тока под действием возникающих электродинамических сил плазма  сожмется в тонкий шнур, имеющий огромную температуру. таким образом, если   плазма получена из атомов легких элементов, то можно ожидать возникновения  термоядерной реакции при пропускании через нее электрического тока. именно об этих опытах большого коллектива советских ученых  и рассказал в 1956 г. в  харуэлле игорь васильевич курчатов. но неимоверные трудности стоят на пути осуществления  контролируемой термоядерной реакции. именно контролируемой, потому что неконтролируемая,взрывная термоядерная реакция происходит при взрыве водородной бомбы. проблема использования термоядерной энергии по праву  считается проблемой 1 современной науки. ее решение позволит навсегда избавить   человечество от угрозы энергетического голода. ведь моря и океаны содержат   огромные запасы тех самых легких ядер, которые необходимы для термоядерной  реакции.
0,0(0 оценок)
Ответ:
Max2934
Max2934
20.05.2023 19:32
Учёные до сих пор бьются над поиском самых эффективных способов по выработке тока — прогресс устремился от гальванических элементов к первым динамо-машинам, паровым, атомным, а теперь солнечным, ветряным и водородным электростанциям. в наше время самым массовым и удобным способом получения электричества остаётся генератор, приводимый в действие паровой турбиной.

паровые турбины были изобретены задолго до того, как человек понял природу электричества. в этом посте мы расскажем об устройстве и работе паровой турбины, а заодно вспомним, как древнегреческий учёный опередил своё время на пятнадцать веков, как произошёл переворот в деле турбиностроения и почему toshiba считает, что тридцатиметровую турбину надо изготавливать с точностью до 0,005 мм.


как устроена паровая турбина

принцип работы паровой турбины относительно прост, а её внутреннее устройство принципиально не менялось уже больше века. чтобы понять принцип работы турбины, рассмотрим, как работает теплоэлектростанция — место, где ископаемое топливо (газ, уголь, мазут) превращается в электричество.

сама по себе паровая турбина не работает, для функционирования ей нужен пар. поэтому электростанция начинается с котла, в котором горит топливо, отдавая жар трубам с дистиллированной водой, пронизывающим котел. в этих тонких трубах вода превращается в пар.


понятная схема работы тэц, вырабатывающей и электричество, и тепло для отопления домов. источник: мосэнерго

турбина представляет собой вал (ротор) с радиально расположенными лопатками, словно у большого вентилятора. за каждым таким диском установлен статор — похожий диск с лопатками другой формы, который закреплён не на валу, а на корпусе самой турбины и потому остающийся неподвижным (отсюда и название — статор).

пару из одного вращающегося диска с лопатками и статора называют ступенью. в одной паровой турбине десятки ступеней — пропустив пар всего через одну ступень тяжёлый вал турбины с массой от 3 до 150 тонн не раскрутить, поэтому ступени последовательно группируются, чтобы извлечь максимум потенциальной энергии пара.

на вход в турбину подаётся пар с высокой температурой и под большим давлением. по давлению пара различают турбины низкого (до 1,2 мпа), среднего (до 5 мпа), высокого (до 15 мпа), сверхвысокого (15—22,5 мпа) и сверхкритического (свыше 22,5 мпа) давления. для сравнения, давление внутри бутылки шампанского составляет порядка 0,63 мпа, в автомобильной шине легковушки — 0,2 мпа.

чем выше давление, тем выше температура кипения воды, а значит, температура пара. на вход турбины подается пар, перегретый до 550-560 °c! зачем так много? по мере прохождения сквозь турбину пар расширяется, чтобы сохранять скорость потока, и теряет температуру, поэтому нужно иметь запас. почему бы не перегреть пар выше? до недавних пор это считалось чрезвычайно сложным и бессмысленным —нагрузка на турбину и котел становилась критической.

паровые турбины для электростанций традиционно имеют несколько цилиндров с лопатками, в которые подается пар высокого, среднего и низкого давления. сперва пар проходит через цилиндр высокого давления, раскручивает турбину, а заодно меняет свои параметры на выходе (снижается давление и температура), после чего уходит в цилиндр среднего давления, а оттуда — низкого. дело в том, что ступени для пара с разными параметрами имеют разные размеры и форму лопаток, чтобы эффективней извлекать энергию пара.

но есть проблема — при падении температуры до точки насыщения пар начинает насыщаться, а это уменьшает кпд турбины. для предотвращения этого на электростанциях после цилиндра высокого и перед попаданием в цилиндр низкого давления пар вновь подогревают в котле. этот процесс называется промежуточным перегревом (промперегрев).

цилиндров среднего и низкого давления в одной турбине может быть несколько. пар на них может подаваться как с края цилиндра, проходя все лопатки последовательно, так и по центру, расходясь к краям, что выравнивает нагрузку на вал.

вращающийся вал турбины соединён с электрогенератором. чтобы электричество в сети имело необходимую частоту, валы генератора и турбины должны вращаться со строго определённой скоростью — в россии ток в сети имеет частоту 50 гц, а турбины работают на 1500 или 3000 об/мин.

говоря, чем выше потребление электроэнергии, производимой электростанцией, тем сильнее генератор сопротивляется вращению, поэтому на турбину приходится подавать бо́льший поток пара. регуляторы частоты вращения турбин мгновенно реагируют на изменения нагрузки и потоком пара, чтобы турбина сохраняла постоянные обороты. если в сети произойдет падение нагрузки, а регулятор не уменьшит объём подаваемого пара, турбина стремительно нарастит обороты и разрушится — в случае такой аварии лопатки легко пробивают корпус турбины, крышу тэс и разлетаются на расстояние в несколько километров.
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота