Высота первого тела в зависимости от времени: y(t) = H + vo t - 0.5 g t^2 Падение в момент t1: H + vo t1 - 0.5 g t1^2 = 0 Высота второго тела от времени: y(t) = H - vo t - 0.5 g t^2 Падение в момент t2: H - vo t2 - 0.5 g t2^2 = 0
Получаем систему из 2 линейных уравнений и 2 неизвестных H, Vo: H - Vo t1 = 0.5 g t1^2 H +Vo t2 = 0.5 g t2^2 Из нее находим H: H = 0.5 g t1 t2
Запишем зависимость высоты от времени для третьего тела: y(t) = H - 0.5 g t^2 Падение третьего тела: H - 0.5 g t3^2 = 0 t3 = sqr(2 H / g) = sqr(t1 t2)
Механическая работа есть произведение равнодействующей приложенных сил на пройденный путь (учитывается также угол между векторами). Цитата из Вики: "Механическая работа — это физическая величина, являющаяся скалярной количественной мерой действия силы или сил на тело или систему, зависящая от численной величины, направления силы (сил) и от перемещения точки (точек), тела или системы". Если принимать расстояние постоянным, то нет. В старших классах, если Вы считаете, что пройденный путь понятие относительное, то утверждение может быть верно. Всё зависит от класса и от мнения учителя.
y(t) = H + vo t - 0.5 g t^2
Падение в момент t1:
H + vo t1 - 0.5 g t1^2 = 0
Высота второго тела от времени:
y(t) = H - vo t - 0.5 g t^2
Падение в момент t2:
H - vo t2 - 0.5 g t2^2 = 0
Получаем систему из 2 линейных уравнений и 2 неизвестных H, Vo:
H - Vo t1 = 0.5 g t1^2
H +Vo t2 = 0.5 g t2^2
Из нее находим H:
H = 0.5 g t1 t2
Запишем зависимость высоты от времени для третьего тела:
y(t) = H - 0.5 g t^2
Падение третьего тела:
H - 0.5 g t3^2 = 0
t3 = sqr(2 H / g) = sqr(t1 t2)
ответ: t3 = sqr( t1 t2) = 6(c)