Сосуд объемом V разделен подвижным поршнем на объемы α∙V и (1 – α)∙V, содержащие газ с температурой T. До какой температуры T1 надо изменить температуру газа, имевшего первоначальный объем α∙V, чтобы его объем стал равен (1 – α)∙V? Температура второго газа не меняется.
Пусть за время Δt на пластину упали N фотонов, общая энергия всех фотонов E = P Δt, энергия каждого фотона (в предположении, что свет монохроматический) e = E/N = P Δt/N. Импульс каждого налетающего фотона равен п = e/c. Посчитаем, какой импульс налетающие фотоны передали пластине.
- Отражённые фотоны (их было RN) передают пластине импульс Δп = 2п
- Поглощённые фотоны (их было (1-R)N) передают платине импульс Δп = п
Суммарно за время Δt пластине будет передан импульс ΔП = RN * 2п + (1-R)N * п = пN * (2R + 1 - R) = (1 + R) пN = (1 + R) (P/c) Δt
Сила F, действующая на пластину, по второму закону Ньютона
F = ΔП / Δt = (1 + R) * P/c
Давление - сила, отнесённая к площади:
p = F/S = (1 + R) * P / cS = 1.6 * 6 / (3*10^8 * 10*10^-4) = 3.2*10^-5 Па = 32 мкПа
ответ. p = 32 мкПа
Решение:
1) Целесообразно разделить задачу на два отрезка: изохорный процесс и изобарный.
Ясно, что при изохорном процессе работа не совершается и нам нужно рассматривать только изобарный процесс.
Получаем: A = P ΔV.
Преобразуем по Менделееву-Клапейрону: A = m R (T - T0) / M.
По условию, конечная температура равна начальной, т.е. T = 320 K. Начальная температура T0 - это конечная температура при изохорном процессе.
Так как процесс изохорный, то по закону Шарля получаем:
3 P0 / T0 = P0 / T <=> 3T = T0 => T = T0 / 3 = 320 / 3 = 106,6 K
Теперь можем посчитать работу газа.
A = 3*10^-1 * 8,31 * 213,4 / 32*10^-3 = 16 625, 193 Дж
2) ΔU = 0, так как изменения температуры не происходит.