Тарту күші 6•10 4 н болатын мәшиненің ғы 2м/с-тен 8м/с-ке лейін артады.мәшиненің жалпы массасы 8т. мәшиненің кинетикалық энергиясының өзгерісін, тарту күшінің жұмысын және оның орын ауыстыру аралығын табыңдар. үйкеліс есептелмейді
Как в быту используют барометр-анероид ? simpson знаток (441), вопрос на голоcовании 4 года назад 4 нравится ответить голосование за лучший ответирина 4 года назадмастер (1127)барометр-анероид – это прибор для измерения атмосферного давления, основанного на безжидкостном исполнении. действие прибора основано на измерении вызываемых атмосферным давлением деформаций тонкостенного металлического сосуда, из которого откачан воздух. барометр анероид был специально создан для использования, по причине того, что ртутные барометры опасны – случайное повреждение может вызвать серьёзную утечку ртути. наиболее применимы в быту механические барометры (барометр анероид) . в них отсутствует жидкость. барометр анероид определяет атмосферное давление, воздействующее на тонкостенную металлическую коробку, внутри которой создано разрежение. если атмосферное давление понижается, коробка барометра анероида расширяется, а при повышении – сжимается. на практике в барометре анероиде часто используется несколько последовательных анероидных коробок, и имеется специальная передаточная система, которая стрелкой, движущейся шкале. в условиях анероид хорошо справляется с определением предстоящего изменения погоды. давление с изменением высоты меняется (снижается с высотой и повышается в низинах) . то же самое запросто можно сказать и о прогнозе погоды: в сухое время, обычно, наблюдается повышенное атмосферное давление, а его понижение вызывает ветер и осадки: снег, дождь, туман. при одном и том же атмосферном давлении высота ртутного столба зависит от температуры и ускорения свободного падения, которое несколько меняется в зависимости от широты и высоты над уровнем моря. чтобы исключить зависимость высоты ртутного столба в барометре от этих параметров, измеренную высоту приводят к температуре 0°с и ускорению свободного падения на уровне моря на широте 45° и, введя инструментальную поправку, получают давление на станции.
Основное уравнение молекулярно-кинетической теории связывает термодинамический параметр ( макропараметр) р с микроскопическими величинами, характеризующими молекулы. Основное уравнение молекулярно-кинетической теории в виде (9.25) позволяет получить уравнение, связывающее все три термодинамических параметра р, V и Т, характеризующих состояние данной массы идеального газа. Основное уравнение молекулярно-кинетической теории для идеального газа устанавливает связь легко измеряемого макроскопического параметра - давления - с такими микроскопическими параметрами газа, как средняя кинетическая энергия и концентрация молекул. Из основного уравнения молекулярно-кинетической теории идеального газа вытекает ряд важных следствий, которые мы рассмотрим. Как записывают основное уравнение молекулярно-кинетической теории идеального газа. Это соотношение называется основным уравнением молекулярно-кинетической теории. Формула (9.5) является основным уравнением молекулярно-кинетической теории газа. Из него следует, что давление, оказываемое газом на стенки сосуда, создается за счет непрерывного бомбардирования их молекулами и численное значение его определяется средней кинетической энергией поступательного движения молекул. Полученное соотношение называется основным уравнением молекулярно-кинетической теории идеального газа, или уравнением Клаузиуса. Закон Авогадро вытекает из основного уравнения молекулярно-кинетической теории. Следует обратить внимание, что и основное уравнение молекулярно-кинетической теории и выражения для средней длины свободного пробега и коэффициентов переноса могут быть выведены, исходя из упрощенной модели идеального газа. В этой модели: 1) действительное распределение по составляющим скоростей заменяется предположением, что. Первое из этих предположений как бы исключает столкновения молекул. Однако в процессе установления равновесия существенная роль принадлежит именно столкновению молекул. После того как равновесное состояние установилось, столкновения уже не могут изменить ни распределения скоростей, ни давления, ни температуры, ни других характеристик системы. Законы Шарля и Гей-Люссака выводятся из основного уравнения молекулярно-кинетической теории. Связать макровеличины Р, V и Т, относящиеся ко всему количеству газа, с характеристикой каждой частицы: массой т, скоростью v и энергией Е позволило основное уравнение молекулярно-кинетической теории. Задача 8.10. Между опенками дьюаровского сосуда находится воздух при температуре t1 17 C и давлении pi 0 03 Па. В сосуд наливают жидкий воздух, находящийся при температуре 2 - 183 С. Воздух между стенками дьюаровского сосуда, после того как в сосуд налит жидкий воздух, находится в неравновесном состоянии, давление его не может быть рассчитано ни по уравнению состояния, ни по основному уравнению молекулярно-кинетической теории.