Тело движется вдоль прямой с постоянным ускорением ax= 1 м/с^2 и начальной скоростью vox = 2 м/с, и приобретает скорость vx = 12 м/с за некоторое время. найдите проекцию перемещения тела и время движения. - с дано
Из 5 представленных вариантов y(-2)=-1 вычислен верно, значит, подставляя в уравнение линейной функции y(x)=ax+b получим: -1= -2a+b, => b= 2a-1 теперь подставляя в наше уравнение каждую пару значений аргумента x и функции у, вычислим параметр а. 3 из полученных решений будут между собой равны, а 4-й будет отличаться от других. это и будет неверно найденное значение. 1= -1a+2a-1 => a=2 3= 2a-1 => a=2 4= a+2a-1 => a=5/3 7=2a+2a-1 => a=2 ответ: y(1)
Дано:Решениеm1 = 0,4 кгm2 = 0,6 кгg = 10м/с2Инерциальную систему отсчета свяжем с Землей. Тело массой m1 взаимодействует с Землей и с нитью, на него действуют сила тяжести Fтяж1 и сила натяжения нитиT1.Тело массой m2 также взаимодействует с Землей инитью. На него действуют сила тяжестиa ?T ? Fтяж 2 и сила натяжения нити T2. Если систему грузов предоставить самой себе, то груз массой m1станет двигаться вверх, а груз массой m2 — вниз.Для каждого тела в соответствии со вторым законом Ньютона запишем уравнение в векторной форме:Fтяж 1 + T1 = m1a1; Fтяж 2 + T2 = m2a2.В проекциях на ось Y (рис. 57) эти уравнения можно записать:Fтяж 1 + T1 = –m1a1; Fтяж 2 + T2 = m2a2.Поскольку массой нити и блока можно пренебречь, то модули сил натяжения T1 и T2 равны, т. е. T1 = T2= T. Так как нить нерастяжима, то ускорения грузов по модулю одинаковы a1 = a2 = a.Получим:m1g – T = –m1a; m2g – T = m2a.Сложим записанные уравнения, умножив первое на (–1):m2g – m1g = m1a + m2a.Откудаa = = .Выразим силу натяжения нити T из первого уравнения:T = m1g + m1a.Подставив выражение для ускорения, получим:T = .a = = 2 м/с2;T = = 4,8 Н.ответ: a = 2 м/с2; T = 4,8 Н.
Fтяж 2 + T2 = m2a2.В проекциях на ось Y (рис. 57) эти уравнения можно записать:Fтяж 1 + T1 = –m1a1;
Fтяж 2 + T2 = m2a2.Поскольку массой нити и блока можно пренебречь, то модули сил натяжения T1 и T2 равны, т. е. T1 = T2= T. Так как нить нерастяжима, то ускорения грузов по модулю одинаковы a1 = a2 = a.Получим:m1g – T = –m1a;
m2g – T = m2a.Сложим записанные уравнения, умножив первое на (–1):m2g – m1g = m1a + m2a.Откудаa = = .Выразим силу натяжения нити T из первого уравнения:T = m1g + m1a.Подставив выражение для ускорения, получим:T = .a = = 2 м/с2;T = = 4,8 Н.ответ: a = 2 м/с2; T = 4,8 Н.