Масса ядра меньше то явление называется "Дефект массы" - уменьшение массы атома по сравнению с суммарной массой всех отдельно взятых составляющих его элементарных частиц, обусловленное энергией их связи в атоме.
Если "разобрать" ядро атома на отдельные протоны и нейтроны (например, с ядерной реакции) , то их масса вновь примет именно те значения, которые нам уже известны: 1,00728 а. е. м. для протона и 1,00867 а. е. м. для нейтрона.
Дефект массы является следствием универсального соотношения E = Mc^2, вытекающего из теории относительности А. Эйнштейна, где E - полная энергия системы, c = 3.1010 см/сек - скорость света в пустоте, M - масса системы (в нашем случае - атома) . Тогда DM = DЕ/c2, где DM - дефект массы, а DE - энергия связи нуклонов в ядре, т. е. энергия, которую необходимо затратить для разделения ядра атома на отдельные протоны и нейтроны. Таким образом, чем больше дефект массы, тем больше энергия связывания нуклонов в ядре и тем устойчивее ядро атома элемента. С увеличением числа протонов в ядре (и массового числа) дефект массы сначала возрастает от нуля (для 1H) до максимума (у 64Ni), а затем постепенно убывает для более тяжелых элементов.
Если "разобрать" ядро атома на отдельные протоны и нейтроны (например, с ядерной реакции) , то их масса вновь примет именно те значения, которые нам уже известны: 1,00728 а. е. м. для протона и 1,00867 а. е. м. для нейтрона.
Дефект массы является следствием универсального соотношения
E = Mc^2,
вытекающего из теории относительности А. Эйнштейна, где E - полная энергия системы, c = 3.1010 см/сек - скорость света в пустоте, M - масса системы (в нашем случае - атома) . Тогда DM = DЕ/c2, где DM - дефект массы, а DE - энергия связи нуклонов в ядре, т. е. энергия, которую необходимо затратить для разделения ядра атома на отдельные протоны и нейтроны. Таким образом, чем больше дефект массы, тем больше энергия связывания нуклонов в ядре и тем устойчивее ядро атома элемента. С увеличением числа протонов в ядре (и массового числа) дефект массы сначала возрастает от нуля (для 1H) до максимума (у 64Ni), а затем постепенно убывает для более тяжелых элементов.
Объяснение:
три проволоки соеденены последовательно, значит сила тока через все три проволоки проходит одинаковая
согласно закона джоуля ленца на каждой из них выделится теплота
Q = I²R*t
сопротивление зависит от материала
R=ρ*L/S
по таблице удельной электропроводности видим что удельная теплопроводность наибольшая у константана а наименьшая у молибдена
следовательно больше тепла выделится на константане.
однако нагревание описывается не теплотой а температурой, а температура зависит от теплоемкости. массы. теплоты.
чтобы знать массу нужно знать плотность.
таким образом мы не можем однозначно утверждать что именно у константана температура поднимется больше чем у других металов.
в условии не даны плотность и теплоемкость данных материалов.
чтобы дать окончательный ответ нужно сравнить величины (удельное сопротивление*плотность вещества/удельная теплоемкость)
чем больше окажется значение тем больше температура будет у проводника.