Температура воздуха в комнате объемом 150 м3 равна 6°с, относительная влажность – 80%. сколько воды нужно испарить в этой комнате, чтобы при увеличении температуры до 18°с относительная влажность стала бы равной 60%?
Альпинист массой m = 80 кг спускается с отвесной скалы, скользя по вертикальной веревке с ускорением a = 0,4 м/с2, направленным вниз. Пренебрегая массой веревки, определите силу T ее натяжения.
Решение
Согласно третьему закону Ньютона альпинист действует на веревку с такой же по модулю силой, с какой веревка действует на альпиниста. На альпиниста действуют две силы: сила тяжести  направленная вертикально вниз, и упругая сила  веревки, направленная вверх. По второму закону Ньютона
ma = mg – T.
Следовательно, сила натяжения веревки T равна
T = m(g – a) = 752 Н.
Если бы альпинист спускался по веревке с постоянной скоростью или неподвижно висел на ней, то сила T' натяжения была бы равна
Объяснение:
Альпинист массой m = 80 кг спускается с отвесной скалы, скользя по вертикальной веревке с ускорением a = 0,4 м/с2, направленным вниз. Пренебрегая массой веревки, определите силу T ее натяжения.
Решение
Согласно третьему закону Ньютона альпинист действует на веревку с такой же по модулю силой, с какой веревка действует на альпиниста. На альпиниста действуют две силы: сила тяжести  направленная вертикально вниз, и упругая сила  веревки, направленная вверх. По второму закону Ньютона
ma = mg – T.
Следовательно, сила натяжения веревки T равна
T = m(g – a) = 752 Н.
Если бы альпинист спускался по веревке с постоянной скоростью или неподвижно висел на ней, то сила T' натяжения была бы равна
T' = mg = 784 Н.
Объяснение:
№1
P = IU = I²R
P1/P2 = ( ( 2I )²( R/4 ) )/( I²R ) = ( I²R )/( I²R ) = 1
№2
η = Рпол./Рзат. * 100%
η = ( I2U2 )/( I1U1 ) 100%
I1 = ( I2U2 )/( ηU1 ) 100%
I1 = ( 9 * 22 )/( 90% * 220 ) 100% = 1 A
№3
λ = Тv
λ = 2π√( LCоб. )v
λ = 2π√( L( C1 + C2 ) )v
λ = 2 * 3,14 √( 10 * 10^-3 ( 360 * 10^-12 + 40 * 10^-12 ) ) 3 * 10^8 = 2 * 3,14 √( 10^-2 ( ( 36 + 4 ) 10^-11 ) 3 * 10^8 = 3768 м
№4
WC( max ) = ( CU( max )² )/2
WL( max ) = ( LI( max )² )/2
W = WC( max ) = WL( max )
( CU( max )² )/2 = ( LI( max )² )/2
CU( max )² = LI( max )²
С = ( LI( max )² )/( U( max )² )
W = WC + WL
W = ( CU² )/2 + ( LI² )/2
( CU( max )² )/2 = ( CU² )/2 + ( LI² )/2
CU( max )² = CU² + LI²
LI( max )² = ( LI( max )²U² )/U( max )² + LI²
LI( max )² = L ( I( max )²U² )/U( max )² + I² )
I( max )² = ( I( max )²U² )/U( max )² + I²
Подставим численные данные и решим уравнение
( 5 * 10^-3 )² = ( ( 5 * 10^-3 )²U²/2² ) + ( 3 * 10^-3 )²
2,5 * 10^-5 = 6,25 * 10^-6U² + 9 * 10^-6
( 25 - 9 ) 10^-6 = 6,25 * 10^-6U²
16 = 6,25U²
U = √( 16/6,25 ) = 1,6 B