Тримаючи нитку у місці кріплення до стержня, розкручую її так, щоб
кулька рухалась по контуру одного з нанесених кіл. Намагаюсь не змі-
нювати радіус кола по контуру якого рухається кулька: R = м.
4. Вимірюю час t, за який тіло здійснить 20 - 30 обертів, N = .
Дослід повторюю п’ять разів:
t
1
= c; t2
= с; t3
= c; t4
= c; t5
= c.
5. Обчислюю для кожного з вимірювань період обертання та його се-
реднє значення:
6. Обчислюю абсолютну похибку та її середнє значення за формулами:
∆Tі
= |Tс
−Tі
|, де і = 1, 2,…5;
7. Відносна похибка: ε = 100%; ε = 100% = %.
Элементы теории относительности
Страница 2 из 2
261. Космический корабль удаляется от Земли с относительной скоростью v1 = 0,8с , а затем с него стартует ракета (в направлении от Земли) со скоростью v2 = 0,8с относительно корабля. Определите скорость u ракеты относительно Земли.
262. Ионизированный атом, вылетев из ускорителя со скоростью 0,8с, испустил фотон в направлении своего движения. Определить скорость фотона относительно ускорителя.
263. Две ракеты движутся навстречу друг другу относительно неподвижного наблюдателя с одинаковой скоростью, равной 0,5с. Определить скорость сближения ракет, исходя из закона сложения скоростей: 1) в классической механике; 2) в специальной теории относительности.
264. Релятивистская частица движется в системе К со скоростью u под углом ψ к оси х. Определить соответствующий угол в системе К`, движущейся со скоростью v относительно системы К в положительном направлении оси х, если оси х и х` обеих систем совпадают.
266. Воспользовавшись тем, что интервал является инвариантной величиной по отношению к преобразованиям координат, определить расстояние, которое пролетел π-мезон с момента рождения до распада, если время его жизни в этой системе отсчета Δt = 4,4 мкс, а собственное время жизни Δt0 = 2,2 мкс.
267. Частица движется со скоростью v = 0,8с. Определите отношение полной энергии релятивистской частицы к ее энергии покоя.
268. Определите, на сколько процентов полная энергия релятивистс элементарной частицы, вылетающей из ускорителя со скоро v = 0,75с, больше ее энергии покоя.
269. Определите скорость движения релятивистской частицы, если ее полная энергия в два раза больше энергии покоя.
270. Определите релятивистский импульс протона, если скорость его движения v = 0,8с.
271. Определите скорость, при которой релятивистский импульс час превышает ее ньютоновский импульс в 3 раза.
272. Определить зависимость скорости частицы (масса частицы m) от времени, если движение одномерное, сила постоянна и уравнение движения релятивистское.
273. Полная энергия релятивистской частицы в 8 раз превышает ее энергию покоя. Определите скорость этой частицы.
274. Кинетическая энергия частицы оказалась равной её энергии покоя. Определить скорость частицы.
275. Определить релятивистский импульс p и кинетическую энергию l протона, движущегося со скоростью v = 0,75с.
276. Определить кинетическую энергию электрона, если полная энергия движущегося электрона втрое больше его энергии покоя. ответ выразить в электрон-вольтах.
277. Определить, какую ускоряющую разность потенциалов должен пройти протон, чтобы его скорость составила 90% скорости света.
278. Определить, какую ускоряющую разность потенциалов должен пройти электрон, чтобы его продольные размеры уменьшились в два раза.
279. Определить работу, которую необходимо совершить, чтобы увеличить скорость частицы от 0,5с до 0,7с.
281. Определить релятивистский импульс электрона, кинетическая энергия которого T = 1 ГэВ.
282. Доказать, что выражение релятивистского импульса р = корень(T*(T+2mc2)/c при v << с переход в соответствующее выражение классической механики.
283. Докажите, что для релятивистской частицы величина E2 – p2*c2 является инвариантной, т.е. имеет одно и то же значение во всех инерциальных системах отсчета.
284. Определить энергию, которую необходимо затратить, чтобы разделить ядро дейтрона на протон и нейтрон. Массу ядра дейтрона принять равной 3,343*10-26 кг. ответ выразите в электрон-вольтах.
285. Определите энергию связи ядра 147N. Примите массу ядра азота равной 2,325 * 10-26 кг. ответ выразите в электрон-вольтах.
Объяснение:
Застосовуємо радіоактивні ізотопи для діагностики захворювань
Організм людини має властивість накопичувати у своїх тканинах певні хімічні речовини. Відомо, наприклад, що щитоподібна залоза накопичує йод, кісткова тканина — фосфор, кальцій і стронцій, печінка — деякі барвники тощо. Швидкість накопичування речовин зале-жіть від стану здоров’я органа. Наприклад, відомо, що активність щитоподібної залози різко зростає у випадку базедової хвороби.
За кількістю йоду в щитоподібній залозі зручно стежити за до його у-радіо-активного ізотопу. Хімічні властивості радіоактивного і стабільного йоду не відрізняються, тому радіоактивний Йод-131 буде накопичуватися так само, як і його стабільний ізотоп.Під впливом іонізаційного випромінювання атоми і молекули живих клітин іонізуються, в результаті чого відбуваються складні фізико-хімічні процеси, які впливають на характер подальшої життєдіяльності людини.
Згідно з одними поглядами, іонізація атомів і молекул, що виникає під дією випромінювання, веде до розірвання зв'язків у білкових молекулах, що призводить до загибелі клітин і поразки всього організмуВплив радіоактивного випромінювання на організм людини можна уявити в дуже спрощеному вигляді таким чином. Припустімо, що в організмі людини відбувається нормальний процес травлення, їжа, що надходить, розкладається на більш прості сполуки, які потім надходять через мембрану усередину кожної клітини і будуть використані як будівельний матеріал для відтворення собі подібних, для відшкодування енергетичних витрат на транспортування речовин і їхню переробку.Специфічність дії іонізуючого випромінювання полягає в тому, що інтенсивність хімічних реакцій, індуційованих вільними радикалами, підвищується, й у них втягуються багато сотень і тисячі молекул, не порушених опроміненням.
Таким чином, ефект дії іонізуючого випромінювання зумовлений не кількістю поглинутої об'єктом, що опромінюється, енергії, а формою, в якій ця енергія передається. Ніякий інший вид енергії (теплова, електрична та ін.), що поглинається біологічним об'єктом у тій самій кількості, не призводить до таких змін, які спричиняє іонізуюче випромінювання.