У дно водойми глибина якої 1м вбита вертикальна вертикальна паля , верхній кінець якоі торкаеться поверхні води кутова висота сонця над горизонтом дорівнює 60 градусів визначте довжину тіні на дні водойми
Составим уравнение для пути s за последнюю секунду как разность расстояний, пройденных телом при свободном падении без начальной скорости (υо = 0 ) за время t и за время t - ∆t (по условию ∆t= 1 с): s = gt2/2 - g(t - ∆t)2/2. (1) из этого уравнения находим t : 2s = gt2 - g(t - ∆t)2, 2s/g = t2 - t2+ 2t∆t - ∆t2 => t = s/ g∆t + ∆t/2. t = 25 м/ 10 м/с2 ∙1 с + 1/2 с = 3 с. и подставляем его в формулу h = gt2/2. (2) вычислим: h = 10 м/с2∙(3 с)2/2 = 45 м. ответ: 45 м.
Объяснение:
Дано:
ε₁ = 14 В
ε₂ = 14 B
R₁ = 1 Ом
R₂ = 2 Ом
R₃ = 2 Ом
__________
U₂ - ?
I₂ - ?
Составить уравнения Кирхгофа.
I₁ - ?
I₃ - ?
а)
Определите по рисунку показание вольтметра:
U₂ = 12 B.
Сила тока: через резистор R₂:
I₂ = U₂ / R₂ = 12 / 2 = 6 A (1)
c)
Напишем уравнение для цепи, представленной на рисунке, применив первое правило Кирхгофа (для узла В):
I₁ - I₂ + I₃ = 0
С учетом (1):
I₁ + I₃ = 6 A (2)
d)
Напишем уравнение, применив второе правило Кирхгофа для контура ABEFA:
I₁R₁ + I₂R₂ = ε₁
1·I₁ + 6·2 = 14
I₁ = 2 А
Тогда, с учетом (2)
I₃ = I₂ - I₁ = 6 - 2 = 4 А
Напишем уравнение, применив второе правило Кирхгофа для контура ABCDEFA:
I₁R₁ - I₃R₃ = ε₁ - ε₃