В комнате работают 5 электроламп: две по 60 Вт, две по 30 Вт, одна 80 Вт. Каждую включают на 7 часов в сутки. Определить стоимость электроэнергии, израсходованной лампами за 10 дней. Действующий тариф за 1кВт ч ( тариф
Используется традиционная несистемная единица "киловатт-час электроэнергии". В Джоулях это выглядит так: 1 кВт·час = 1000 Вт*3600 сек = 3 600 000 Вт·сек = 3,6 МДж PS Физический смысл единицы потребления электроэнергии прост: это энергия, потраченная в течение часа при работе на нагрузку с мощностью потребления 1000 Ватт. При действующем сетевом напряжении 220 В такая мощность выделяется в нагрузке при силе тока 4,5 А. Прибор, потребляющий от стандартной бытовой сети такую силу тока накрутит в течение часа Ваш счётчик как раз на 1 киловатт-час.
Горизонтальное расстояние L, горизонтальная составляющая скорости v₀Cosα и время полёта камня t связаны следующим соотношением: tv₀Cosα = L откуда время полёта t = L/v₀Cosα
С другой стороны, время полёта складывается из времени, в течение которого камень слетал на максимальную высоту и вернулся обратно, на высоту обрыва: t₁ = 2v₀Sinα/g и времени t₂, которое затратил камень, падая с высоты h обрыва с вертикальной составляющей, равной v₀Sinα.
Время t₂ можно рассчитать, если мы определим вертикальную составляющую скорости v, с которой камень упал в овраг, поскольку t₂ = (v - v₀Sinα)/g.
Полная механическая энергия E = mv²/2 есть величина постоянная, поэтому можно написать mv²/2 = mgh + mv₀²Sin²α/2 откуда вертикальная составляющая скорости, с которой камень завершил полёт равна: v = √(2gh + v₀²Sin²α) и в результате время t₂ = (√(2gh + v₀²Sin²α) - v₀Sinα)/g
Таким образом, мы можем выразить время полёта через вертикальную составляющую начальной скорости броска камня: t = t₁ + t₂ = 2v₀Sinα/g + (√(2gh + v₀²Sin²α) - v₀Sinα)/g; t = v₀Sinα/g + √(2h/g + v₀²Sin²α/g²)
Это даёт нам возможность написать уравнение для определения искомой начальной скорости v₀:
Поскольку решение перегружено алгебраическими преобразованиями, проведём на всякий случай проверку. t = v₀Sinα/g + √(2h/g + v₀²Sin²α/g²) = 6.03·0.5/10 + √(2·100/10 + 6.03²0.5²/100) = 4.78 c
Тогда L = tv₀Cosα = 4.78·6.03·0.866 = 25 м - по-видимому, в вычислениях я не проврался.
Итак, ответ: камень бросили с начальной скоростью 6,03 м/с
В Джоулях это выглядит так:
1 кВт·час = 1000 Вт*3600 сек = 3 600 000 Вт·сек = 3,6 МДж
PS
Физический смысл единицы потребления электроэнергии прост: это энергия, потраченная в течение часа при работе на нагрузку с мощностью потребления 1000 Ватт. При действующем сетевом напряжении 220 В такая мощность выделяется в нагрузке при силе тока 4,5 А. Прибор, потребляющий от стандартной бытовой сети такую силу тока накрутит в течение часа Ваш счётчик как раз на 1 киловатт-час.
tv₀Cosα = L
откуда время полёта
t = L/v₀Cosα
С другой стороны, время полёта складывается из времени, в течение которого камень слетал на максимальную высоту и вернулся обратно, на высоту обрыва:
t₁ = 2v₀Sinα/g
и времени t₂, которое затратил камень, падая с высоты h обрыва с вертикальной составляющей, равной v₀Sinα.
Время t₂ можно рассчитать, если мы определим вертикальную составляющую скорости v, с которой камень упал в овраг, поскольку
t₂ = (v - v₀Sinα)/g.
Полная механическая энергия E = mv²/2 есть величина постоянная, поэтому можно написать
mv²/2 = mgh + mv₀²Sin²α/2
откуда вертикальная составляющая скорости, с которой камень завершил полёт равна:
v = √(2gh + v₀²Sin²α) и в результате время
t₂ = (√(2gh + v₀²Sin²α) - v₀Sinα)/g
Таким образом, мы можем выразить время полёта через вертикальную составляющую начальной скорости броска камня:
t = t₁ + t₂ = 2v₀Sinα/g + (√(2gh + v₀²Sin²α) - v₀Sinα)/g;
t = v₀Sinα/g + √(2h/g + v₀²Sin²α/g²)
Это даёт нам возможность написать уравнение для определения искомой начальной скорости v₀:
L/v₀Cosα = v₀Sinα/g + √(2h/g + v₀²Sin²α/g²)
Решаем его:
L = v₀²SinαCosα/g + √(2hv₀²Cosα²/g + v₀⁴Sin²αCosα²/g²)
L - v₀²SinαCosα/g = √(2hv₀²Cosα²/g + v₀⁴Sin²αCosα²/g²)
L² - 2Lv₀²SinαCosα/g + v₀⁴Sin²αCosα²/g² = 2hv₀²Cosα²/g + v₀⁴Sin²αCosα²/g²
L² - 2Lv₀²SinαCosα/g = 2hv₀²Cosα²/g
v₀² = L²g/(2hCosα² + 2LSinαCosα)
и окончательно
v₀ = L√(g/(2(hCosα² + LSinαCosα))
v₀ = 25√(10/(2(100·0.866² + 25·0.5·0.866)) = 6.03 м/с
Поскольку решение перегружено алгебраическими преобразованиями, проведём на всякий случай проверку.
t = v₀Sinα/g + √(2h/g + v₀²Sin²α/g²) = 6.03·0.5/10 + √(2·100/10 + 6.03²0.5²/100) = 4.78 c
Тогда
L = tv₀Cosα = 4.78·6.03·0.866 = 25 м -
по-видимому, в вычислениях я не проврался.
Итак, ответ: камень бросили с начальной скоростью 6,03 м/с