Если решать эту задачу по школьному, без привлечения инструментария матанализа, то рассуждать можно следующим образом, - в любой точке траектории ускорение свободного падения может быть разложено на две составляющих - вдоль касательной к траектории (нормальное ускорение) и вдоль нормали к траектории (центростремительное ускорение), нам нужна вторая величина, так как она позволяет рассчитать искомый радиус. В наивысшей точке подъема мяча, очевидно, что центростремительное ускорение целиком совпадает с ускорением свободного падения:
Откуда:
Горизонтальная составляющая скорости будет везде одинакова и равна (учтем что 54 км/ч=15 м/с):
До вылета снаряда импульс судна P1=(m1+m2)*v1= 200 050*54/3,6 =3000750 кг*м/с. После выстрела геометрическая сумма импульса судна и импульса снаряда равна импульсу судна до выстрела.Импульс снаряда P2=m2*v2=50 000 кг*м/с. После выстрела импульс судна стол равен P1*P1+P2*P2-2*P1*P2*cos(120)=3026059,82 кг*м/с, откуда скорость судна после выстрела =15,13 м/с. Но вектор скорости направлен к горизонтали под углом, косинус которого равен 0,999, так что "горизонтальная" скорость судна равна 15,13*0,999=15,128 м/с. Приращение скорости составило 0,128 м/с
11,25 м
Объяснение:
Если решать эту задачу по школьному, без привлечения инструментария матанализа, то рассуждать можно следующим образом, - в любой точке траектории ускорение свободного падения может быть разложено на две составляющих - вдоль касательной к траектории (нормальное ускорение) и вдоль нормали к траектории (центростремительное ускорение), нам нужна вторая величина, так как она позволяет рассчитать искомый радиус. В наивысшей точке подъема мяча, очевидно, что центростремительное ускорение целиком совпадает с ускорением свободного падения:
Откуда:
Горизонтальная составляющая скорости будет везде одинакова и равна (учтем что 54 км/ч=15 м/с):
м/с
Искомый радиус кривизны траектории:
м.
=3000750 кг*м/с. После выстрела геометрическая сумма импульса судна и импульса снаряда равна импульсу судна до выстрела.Импульс снаряда P2=m2*v2=50 000 кг*м/с. После выстрела импульс судна стол равен P1*P1+P2*P2-2*P1*P2*cos(120)=3026059,82 кг*м/с, откуда скорость судна после выстрела =15,13 м/с. Но вектор скорости направлен к горизонтали под углом, косинус которого равен 0,999, так что "горизонтальная" скорость судна равна 15,13*0,999=15,128 м/с. Приращение скорости составило 0,128 м/с