ів вантаж 20 г і прикліплений до кінця невагомого стрижня завдовжки 40 см рівномірно обертається у вертикальній площині із швидкістю 4 м/с.Яка сила натягу стрижня на момент коли вантаж проходить верхню точку своєї траєкторії?
Альпинист массой m = 80 кг спускается с отвесной скалы, скользя по вертикальной веревке с ускорением a = 0,4 м/с2, направленным вниз. Пренебрегая массой веревки, определите силу T ее натяжения.
Решение
Согласно третьему закону Ньютона альпинист действует на веревку с такой же по модулю силой, с какой веревка действует на альпиниста. На альпиниста действуют две силы: сила тяжести  направленная вертикально вниз, и упругая сила  веревки, направленная вверх. По второму закону Ньютона
ma = mg – T.
Следовательно, сила натяжения веревки T равна
T = m(g – a) = 752 Н.
Если бы альпинист спускался по веревке с постоянной скоростью или неподвижно висел на ней, то сила T' натяжения была бы равна
Будем считать, что в трубке идеальный газ. Тогда используя уравнение состояния идеального газа при постоянной температуре имеем pV=const (1). При расположении трубки вертикально пренебрежем силой тяжести газов. Тогда объем газов в трубке изменится под действием силы тяжесли ртутного столбика Fрт=m*g. Откуда ррт (давление рт.столбика)=Fрт/S трубки. Обоначим p1 и V1 давление и объем газа в верхней части трубки, а p2 и V2 давление и объем газа в нижней части трубки. Знаем что, V1=V2+4 см3 и V1+V2=51*2см3 (суммарный объем занимаемый газами не изменился), из (1) имеем p1*V1=p2*V2=сonst. Зная, что система будет в равновесии при p2=p1+pрт, найдем S.
Объяснение:
Альпинист массой m = 80 кг спускается с отвесной скалы, скользя по вертикальной веревке с ускорением a = 0,4 м/с2, направленным вниз. Пренебрегая массой веревки, определите силу T ее натяжения.
Решение
Согласно третьему закону Ньютона альпинист действует на веревку с такой же по модулю силой, с какой веревка действует на альпиниста. На альпиниста действуют две силы: сила тяжести  направленная вертикально вниз, и упругая сила  веревки, направленная вверх. По второму закону Ньютона
ma = mg – T.
Следовательно, сила натяжения веревки T равна
T = m(g – a) = 752 Н.
Если бы альпинист спускался по веревке с постоянной скоростью или неподвижно висел на ней, то сила T' натяжения была бы равна
T' = mg = 784 Н.
При расположении трубки вертикально пренебрежем силой тяжести газов. Тогда объем газов в трубке изменится под действием силы тяжесли ртутного столбика Fрт=m*g. Откуда ррт (давление рт.столбика)=Fрт/S трубки.
Обоначим p1 и V1 давление и объем газа в верхней части трубки, а p2 и V2 давление и объем газа в нижней части трубки. Знаем что, V1=V2+4 см3 и V1+V2=51*2см3 (суммарный объем занимаемый газами не изменился), из (1) имеем p1*V1=p2*V2=сonst. Зная, что система будет в равновесии при p2=p1+pрт, найдем S.