Велосипедист съезжает с горки двигаясь прямолинейно равноускоренно.за время спуска скорость велосипедиста увеличилось на 10м/с. ускорение велосипедиста 05м/с2 . сколько времени длился спуск
Происходит теплообмен между двумя телами (алюминий при температуре t1 и лед при температуре t2 = 0 °C). Так как куб должен погрузиться в лед, а лед расплавится не весь, то конечная температура системы должна быть равна температуре льда, т.е. t3 = t2 = 0 °C. Запишем уравнение теплового баланса для двух тел: Q1 + Q2 = 0, где Q1 = ca∙ma∙(t2 – t1) — количество теплоты, которое отдает куб массой ma (Q1 < 0, т.к. тело отдает тепло), ma = ρa∙Va, Va — объем куба. Лед взят при температуре плавления, поэтому он сразу начинает плавиться. Тогда Q2 = m2∙λ (Q2 > 0, т.к. тело получает тепло), m2 = ρ2∙V2 — масса расплавившегося льда. Так как куб полностью погрузится в лед, то Va ≥ V2 (будем искать минимальную температура, при которой Va = V2). Тогда ca∙ ρa∙Va∙(t2 – t1) + ρ2∙Va∙λ = 0, t1=t2+ρ2⋅λca⋅ρa, t1 = 135
2) Напишем первый закон Ньютона (сумма всех сил = 0, при этом силы - это вектора):
N + mg + Fтр = 0.
Спроецируем вектора на оси OX и OY:
OX: mg sinα - u N = 0
(в этой записи мы учли, что Fтр = u N, где u - коэф-т трения, N - сила нормальной реакции опоры)
OY: N - mg cosα = 0,
N = mg cosα (!)
Подставим формулу (!) в OX:
mg sinα - u mg cosα = 0, откуда
u = tgα.
таким образом, масса бруска не нужна, важен только угол наклонной плоскости
Объяснение:
Происходит теплообмен между двумя телами (алюминий при температуре t1 и лед при температуре t2 = 0 °C). Так как куб должен погрузиться в лед, а лед расплавится не весь, то конечная температура системы должна быть равна температуре льда, т.е. t3 = t2 = 0 °C. Запишем уравнение теплового баланса для двух тел: Q1 + Q2 = 0, где Q1 = ca∙ma∙(t2 – t1) — количество теплоты, которое отдает куб массой ma (Q1 < 0, т.к. тело отдает тепло), ma = ρa∙Va, Va — объем куба. Лед взят при температуре плавления, поэтому он сразу начинает плавиться. Тогда Q2 = m2∙λ (Q2 > 0, т.к. тело получает тепло), m2 = ρ2∙V2 — масса расплавившегося льда. Так как куб полностью погрузится в лед, то Va ≥ V2 (будем искать минимальную температура, при которой Va = V2). Тогда ca∙ ρa∙Va∙(t2 – t1) + ρ2∙Va∙λ = 0, t1=t2+ρ2⋅λca⋅ρa, t1 = 135