2. m=0.8 кг Ek=mv²/2 = 0.8*18²/2= 129.6 дж полная энергия 129,6+mgh= =129.6+0.8*10*10= 129.6+80=209.6 дж
3. Ep=kΔx²/2=40*0.2²/2=0.8 дж
4. энергия растянутой тетевы переходит в кинетическую энергию при начале полета стрелы. Пружина обладает потенциальной энергией - она переходит в кинетическую пули в начале ее полета
5. при падении капли ее потенциальная энергия переходит в кинетическую mgh=mv²/2 при падении на землю.
6. m1gh=5*10*h=50h m2gh=2*10*h/2=10h в первом случае потенциальная энергия в 5 раз больше.
7. на шкаф действуют F1 - сила прилагаемая к шкафу и направленная в противоположную сторону F2=kmg - сила трения. работа A=(F1-F2)S где S перемещение шкафа.
Для анализа результатов различных экспериментов, важно знать какие процессы происходят при взаимодействии частицы с веществом мишени. Регистрация частиц также происходит в результате их взаимодействия с веществом детектора. Взаимодействие частиц с веществом зависит от их типа, заряда, массы и энергии. Заряженные частицы ионизируют атомы вещества, взаимодействуя с атомными электронами. Нейтроны и гамма-кванты, сталкиваясь с частицами в веществе, передают им свою энергию, вызывая ионизацию за счет вторичных заряженных частиц. В случае гамма-квантов основными процессами, приводящими к образованию заряженных частиц являются фотоэффект, эффект Комптона и рождение электрон-позитронных пар. Взаимодействие частиц зависит от таких характеристик вещества как плотность, атомный номер вещества, средний ионизационный потенциал вещества. Каждое взаимодействие приводит к потере энергии частицей и изменению траектории её движения. В случае пучка заряженных частиц с кинетической энергией Е проходящих слой вещества их энергия уменьшается по мере прохождения вещества, разброс энергий увеличивается. Пучок расширяется за счет многократного рассеяния. Между проходящей в среде частицей и частицами вещества (электронами, атомными ядрами) могут происходить различные реакции. Как правило их вероятность заметно меньше, чем вероятность ионизации. Однако реакции важны, в тех случаях, когда взаимодействующая с веществом частица является нейтральной. Например, нейтрино можно зарегистрировать по их взаимодействию с электронами вещества детектора или в результате их взаимодействия с нуклонами ядра. Нейтроны регистрируются по протонам отдачи или по ядерным реакциям, которые они вызывают.
Тяжелые заряженные частицы - протоны, альфа-частицы, мезоны и др.
Тяжелые заряженные частицы взаимодействуют главным образом с электронами атомных оболочек, вызывая ионизацию атомов. Максимальная энергия, которая может быть передана в одном акте взаимодействия тяжелой частицей, движущейся со скоростью v << с, неподвижному электрону, равна Емакс = 2mev2. Проходя через вещество, заряженная частица совершает десятки тысяч соударений, постепенно теряя энергию. Тормозная вещества может быть охарактеризована величиной удельных потерь dE/dx. Удельные ионизационные потери представляют собой отношение энергии Е заряженной частицы, теряемой на ионизацию среды при прохождении отрезка х, к длине этого отрезка. Удельные потери энергии возрастают с уменьшением энергии частицы (рис.1) и особенно резко перед ее остановкой в веществе (пик Брэгга).
N=60*2/10=12 Вт
2. m=0.8 кг Ek=mv²/2 = 0.8*18²/2= 129.6 дж полная энергия 129,6+mgh=
=129.6+0.8*10*10= 129.6+80=209.6 дж
3. Ep=kΔx²/2=40*0.2²/2=0.8 дж
4. энергия растянутой тетевы переходит в кинетическую энергию при начале полета стрелы. Пружина обладает потенциальной энергией - она переходит в кинетическую пули в начале ее полета
5. при падении капли ее потенциальная энергия переходит в кинетическую mgh=mv²/2 при падении на землю.
6. m1gh=5*10*h=50h m2gh=2*10*h/2=10h в первом случае потенциальная энергия в 5 раз больше.
7. на шкаф действуют F1 - сила прилагаемая к шкафу и направленная в противоположную сторону F2=kmg - сила трения.
работа A=(F1-F2)S где S перемещение шкафа.
Взаимодействие частиц с веществом
Для анализа результатов различных экспериментов, важно знать какие процессы происходят при взаимодействии частицы с веществом мишени. Регистрация частиц также происходит в результате их взаимодействия с веществом детектора.
Взаимодействие частиц с веществом зависит от их типа, заряда, массы и энергии. Заряженные частицы ионизируют атомы вещества, взаимодействуя с атомными электронами. Нейтроны и гамма-кванты, сталкиваясь с частицами в веществе, передают им свою энергию, вызывая ионизацию за счет вторичных заряженных частиц. В случае гамма-квантов основными процессами, приводящими к образованию заряженных частиц являются фотоэффект, эффект Комптона и рождение электрон-позитронных пар. Взаимодействие частиц зависит от таких характеристик вещества как плотность, атомный номер вещества, средний ионизационный потенциал вещества.
Каждое взаимодействие приводит к потере энергии частицей и изменению траектории её движения. В случае пучка заряженных частиц с кинетической энергией Е проходящих слой вещества их энергия уменьшается по мере прохождения вещества, разброс энергий увеличивается. Пучок расширяется за счет многократного рассеяния.
Между проходящей в среде частицей и частицами вещества (электронами, атомными ядрами) могут происходить различные реакции. Как правило их вероятность заметно меньше, чем вероятность ионизации. Однако реакции важны, в тех случаях, когда взаимодействующая с веществом частица является нейтральной. Например, нейтрино можно зарегистрировать по их взаимодействию с электронами вещества детектора или в результате их взаимодействия с нуклонами ядра. Нейтроны регистрируются по протонам отдачи или по ядерным реакциям, которые они вызывают.
Тяжелые заряженные частицы - протоны,
альфа-частицы, мезоны и др.
Тяжелые заряженные частицы взаимодействуют главным образом с электронами атомных оболочек, вызывая ионизацию атомов. Максимальная энергия, которая может быть передана в одном акте взаимодействия тяжелой частицей, движущейся со скоростью v << с, неподвижному электрону, равна
Емакс = 2mev2.
Проходя через вещество, заряженная частица совершает десятки тысяч соударений, постепенно теряя энергию. Тормозная вещества может быть охарактеризована величиной удельных потерь dE/dx. Удельные ионизационные потери представляют собой отношение энергии Е заряженной частицы, теряемой на ионизацию среды при прохождении отрезка х, к длине этого отрезка. Удельные потери энергии возрастают с уменьшением энергии частицы (рис.1) и особенно резко перед ее остановкой в веществе (пик Брэгга).