1) Изначально шар находится на некоторой высоте h1 с длиной нити l. Затем его опускают и в положении дальнейшего соударения с пулей шар имеет скорость V1. Запишем закон сохранения энергии:
Сокращаем m1. Рассмотрим cosα:
Откуда выводим h1:
Выводим из ЗСЭ V1, подставляя формулу для h1:
2) Закон сохранения импульса по горизонтали для пули и шара, спроецированный на некоторую ось ОХ, направленную в сторону движения пули, имеет вид:
,
где V1' - скорость шара после соударения с пулей. Выведем ее:
3) Закон сохранения энергии для шара после соударения с пулей:
1502 м
Объяснение:
Поскольку сопротивлением воздуха можно пренебречь, на тело действует только сила тяжести.
Рассмотрим вертикальный и горизонтальный полет отдельно.
Вертикальное движение мяча является равноускоренным с ускорением g.
Горизонтальное движение является равномерным.
Начальная вертикальная скорость:
Начальная горизонтальная скорость:
Полет заканчивается, когда мяч падает на землю.
Найдем время полета:
Получаем обычное квадратное уравнение. Решая его, при условии что получаем
За это время горизонтально мяч пролетит
кг
м
°
кг
м/с
м/с
Найти:
Решение:
1) Изначально шар находится на некоторой высоте h1 с длиной нити l. Затем его опускают и в положении дальнейшего соударения с пулей шар имеет скорость V1. Запишем закон сохранения энергии:
Сокращаем m1. Рассмотрим cosα:
Откуда выводим h1:
Выводим из ЗСЭ V1, подставляя формулу для h1:
2) Закон сохранения импульса по горизонтали для пули и шара, спроецированный на некоторую ось ОХ, направленную в сторону движения пули, имеет вид:
,
где V1' - скорость шара после соударения с пулей. Выведем ее:
3) Закон сохранения энергии для шара после соударения с пулей:
При этом h2 аналогично h1 равен:
Перепишем ЗСЭ в виде:
Откуда cosβ:
°