Вкомнате объёмом 50 метров в кубе при темпиратуре 20 грудусов по цельсию и давлении 10 в 5 паскаль. если темпиратура воздуха повышается до 25 градусов по цельсию, то через открытую форточку выйдет масса воздуха, )
Как известно, сила, действующая со стороны электромагнитного поля на движущуюся со скоростью v c зарядом q частицу, выражается формулой:
, (1)
где первый член представляет силу, действующую со стороны электрического поля (сила Кулона), второй – со стороны магнитного поля B (сила Лоренца). Дальнейшие рассуждения мы проведём для положительно заряженной частицы, однако они применимы и к движению отрицательно заряженных частиц. Когда речь идёт об электроне, необходимо помнить что он несёт отрицательный заряд и направление его отклонения всегда будет противоположно направлению отклонения положительно заряженной частицы.
Согласно второму закону Ньютона, сила равна произведению массыm на ускорение :
. (2)
Приравнивая правые части (1) и (2), получаем:
. (3)
Для ускорения можно записать следующее соотношение
(4)
Это уравнение (4) показывает, что движение заряженной частицы в силовых полях зависит от отношения , которое называетсяудельным зарядом данной частицы. Следовательно, изучая движение заряженных частиц в электрическом и магнитном полях, можно определить удельный заряд частицы и тем самым получить сведения о природе частиц.
Удельный заряд электрона можно определить различными методами. Наиболее распространёнными из них являются метод магнитной фокусировки и метод магнетрона.
Рассмотрим теперь отдельно действие магнитного поля. Полагая в (3) , получаем:
. (5)
В однородном магнитном поле, направленном перпендикулярно к скорости частицы, легко найти ее траекторию. В самом деле, так как сила Лоренца всегда перпендикулярна к скорости, то она меняет только направление скорости, но не её величину, поэтому электрон будет двигаться по окружности с некоторым радиусом ρ. Приравнивая значение силы Лоренца и центробежной силы инерции:
, (6)
получаем выражение для радиуса ρ
. (7)
Чем больше скорость электрона , тем сильнее он стремится двигаться прямолинейно по инерции, и радиус искривления траектории будет больше.
При последовательном соединении сила тока в любых частях цепи одна и та же
I=I1=I2
Общее сопротивление цепи при последовательном соединении равно сумме сопротивлений отдельных проводников
R=R1+R2
Напряжение на концах отдельных участков цепи рассчитывается на основе закона Ома: U1=IR1 и U2=IR2
Полное напряжение в цепи при последовательном соединении, или напряжение на полюсах источника тока, равно сумме напряжений на отдельных участках цепи:
U=U1+U2
R1=10 (om) R2=15 (om) R3=25 (om) U=100 B
1)R=R1+R2= 10+15+25=50 (om)
2) I=U/R= 100/50=2A
3)U1=IR1=2X10=20B
4) U2=IR2=2X15=30B
5) U3=IR3= 25X2=50B
Как известно, сила, действующая со стороны электромагнитного поля на движущуюся со скоростью v c зарядом q частицу, выражается формулой:
, (1)
где первый член представляет силу, действующую со стороны электрического поля (сила Кулона), второй – со стороны магнитного поля B (сила Лоренца). Дальнейшие рассуждения мы проведём для положительно заряженной частицы, однако они применимы и к движению отрицательно заряженных частиц. Когда речь идёт об электроне, необходимо помнить что он несёт отрицательный заряд и направление его отклонения всегда будет противоположно направлению отклонения положительно заряженной частицы.
Согласно второму закону Ньютона, сила равна произведению массыm на ускорение :
. (2)
Приравнивая правые части (1) и (2), получаем:
. (3)
Для ускорения можно записать следующее соотношение
(4)
Это уравнение (4) показывает, что движение заряженной частицы в силовых полях зависит от отношения , которое называетсяудельным зарядом данной частицы. Следовательно, изучая движение заряженных частиц в электрическом и магнитном полях, можно определить удельный заряд частицы и тем самым получить сведения о природе частиц.
Удельный заряд электрона можно определить различными методами. Наиболее распространёнными из них являются метод магнитной фокусировки и метод магнетрона.
Рассмотрим теперь отдельно действие магнитного поля. Полагая в (3) , получаем:
. (5)
В однородном магнитном поле, направленном перпендикулярно к скорости частицы, легко найти ее траекторию. В самом деле, так как сила Лоренца всегда перпендикулярна к скорости, то она меняет только направление скорости, но не её величину, поэтому электрон будет двигаться по окружности с некоторым радиусом ρ. Приравнивая значение силы Лоренца и центробежной силы инерции:
, (6)
получаем выражение для радиуса ρ
. (7)
Чем больше скорость электрона , тем сильнее он стремится двигаться прямолинейно по инерции, и радиус искривления траектории будет больше.