Вращающееся магнитное поле трехфазного асинхронного двигателя совершает 3000 об.мин при частоте тока 50 Гц.Какой частоты переменный ток необходимо подвести к обмотке статора, чтобы число оборотов поля в минуту стало = 750?
Пробка, получается, находится внизу, сбоку (в стенке сосуда). На пробку керосин давит снизу, сбоку и сверху. Надо выразить среднее давление на неё, а потом уже и силу. Среднее гидростатическое давление получается из среднего арифметического давления верхней границы и давления нижней. Получается, что сверху на пробку давление равно:
р1 = ρgh1
А снизу оно равно:
р2 = ρgh2
Высота h2 складывается из высоты h1 и высоты пробки h'. Найдём её из площади сечения пробки. Возьмём квадратную форму сечения вместо круглой - так удобнее считать, к тому же сторона квадрата будет не слишком сильно отличаться от диаметра круга при условии, что они одной и той же площади.
попытка не пытка: пусть проводник перемещается вдоль оси ОХ, то есть в текущий момент времени t его центр масс будет иметь координату х. Тогда площадь, покрываемая проводником, равна L*x, где L - длина этого проводника. Итак, имеем S = L*x. По закону Фарадея для ЭДС индукции: ξ = -ΔФ/Δt, Ф = BS*cosγ - магнитный поток через площадку заданной величины, γ - угол между нормалью к этой площадке и вектором магнитной индукции В. С другой стороны по закону Ома сила тока = I = ξ/R = - ΔФ/(RΔt) = - ВcosγΔS/(RΔt) =
- ВcosγΔ(L*x)/(RΔt) = - ВLcosγ*Δx/(RΔt) = - v*ВLcosγ/R, где v = Δx/(Δt) - скорость перемещения проводника
Дано:
s = 16 см² = 16*10^(-4) = м²
h1 = 364 мм = 0,364 м
ρ = 800 кг/м3
g = 9,8 H/кг
F - ?
Пробка, получается, находится внизу, сбоку (в стенке сосуда). На пробку керосин давит снизу, сбоку и сверху. Надо выразить среднее давление на неё, а потом уже и силу. Среднее гидростатическое давление получается из среднего арифметического давления верхней границы и давления нижней. Получается, что сверху на пробку давление равно:
р1 = ρgh1
А снизу оно равно:
р2 = ρgh2
Высота h2 складывается из высоты h1 и высоты пробки h'. Найдём её из площади сечения пробки. Возьмём квадратную форму сечения вместо круглой - так удобнее считать, к тому же сторона квадрата будет не слишком сильно отличаться от диаметра круга при условии, что они одной и той же площади.
s(квадрата) = h'² =>
=> h' = √s
Выходит, что:
p2 = ρgh2 = ρg(h1 + h')
Тогда среднее давление на пробку:
р(ср.) = (р1 + р2)/2 = (ρgh1 + ρgh2)/2 = ρg(h1 + h2)/2 = ρg(h1 + h1 + h')/2 = ρg(2h1 + √s)/2
Теперь выражаем силу давления из формулы давления и находим значение:
p = F/s => F = p*s = ρg(2h1 + √s)/2 * s = ρgs(2h1 + √s)/2 = (800*9,8*16*10^(-4)*(2*0,364 + √(16*10^(-4/2 = (800*9,8*16*10^(-4)*(0,728 + 4*10^(-2)))/2 = (800*9,8*0,0016*(0,728 + 0,04))/2 = (800*9,8*0,0016*0,768)/2 = 400*9,8*0,0016*0,768 = 4,816... = 4,8 H
ответ: 4,8 Н.
попытка не пытка: пусть проводник перемещается вдоль оси ОХ, то есть в текущий момент времени t его центр масс будет иметь координату х. Тогда площадь, покрываемая проводником, равна L*x, где L - длина этого проводника. Итак, имеем S = L*x. По закону Фарадея для ЭДС индукции: ξ = -ΔФ/Δt, Ф = BS*cosγ - магнитный поток через площадку заданной величины, γ - угол между нормалью к этой площадке и вектором магнитной индукции В. С другой стороны по закону Ома сила тока = I = ξ/R = - ΔФ/(RΔt) = - ВcosγΔS/(RΔt) =
- ВcosγΔ(L*x)/(RΔt) = - ВLcosγ*Δx/(RΔt) = - v*ВLcosγ/R, где v = Δx/(Δt) - скорость перемещения проводника