Итак, что у нас происходит. Кусок льда, оказавшись в воде, сначала нагревается до температуры плавления, затем тает. При этом вода в сосуде охлаждается. Коль лед не весь растаял, есть основания полагать, что процесс завершился при температуре 0° С. Тогда вода в сосуде, при охлаждении отдает количество теплоты Q₁: (1) Тут: с₁ - удельная теплоемкость воды 4200 Дж/(кг·К) m₁ - масса воды 1 кг (1л - 1кг) T₀ - начальная температура воды 10°С T₁ - конечная температура воды и льда 0°С
Лед принял количество теплоты Q₂ : (2) Где: с₂ - удельная теплоемкость льда 2060 Дж/(кг·К) m₂ - начальная масса льда T₂ - начальная температура льда -20°С T₁ - конечная температура воды и льда 0°С m₃ - масса растаявшего льда. λ - удельная теплота плавления льда 334*10³ Дж/кг При этом: кг (3)
Составляем уравнение теплового баланса, приравниваем Q₁ и Q₂. При этом, согласно (3) выражаем m₃ через m₂ (4) Теперь из 4 выражаем m₂:
Пока веревка висит, сила тяжести, действующая на веревку, равна mg; По мере поднятия веревки эта сила тяжести уменьшается до нуля, т.к. длина свисающей веревки уменьшается.
Найдем среднюю силу тяжести F; F=(Fmax-Fmin)/2;
F=(6*10-0)/2=30 Н; A=Fh; A=30*40=1200 Дж
ответ: A=1200 Дж
Второй
Найдем зависимость массы веревки от длины. Назовем ее ρ; ρ=6/40=0.15 кг/м;
Сила, действующая на веревку, изменяется по закону F(l)=0.15gl;
A=FL; По мере поднятия веревки ее длина уменьшается вместе с силой, действующей на веревку. Найдем работу по поднятию с интеграла
A=\int\limits^0_{40} {0.15*10*l} \, dx =-1200
40
∫
0
0.15∗10∗ldx=−1200 Здесь -1200 Дж потому, что в данном случае мы рассчитываем работу силы тяжести, которая отрицательна(мы ведь против нее совершаем работу).
Тогда вода в сосуде, при охлаждении отдает количество теплоты Q₁:
(1)
Тут:
с₁ - удельная теплоемкость воды 4200 Дж/(кг·К)
m₁ - масса воды 1 кг (1л - 1кг)
T₀ - начальная температура воды 10°С
T₁ - конечная температура воды и льда 0°С
Лед принял количество теплоты Q₂ :
(2)
Где:
с₂ - удельная теплоемкость льда 2060 Дж/(кг·К)
m₂ - начальная масса льда
T₂ - начальная температура льда -20°С
T₁ - конечная температура воды и льда 0°С
m₃ - масса растаявшего льда.
λ - удельная теплота плавления льда 334*10³ Дж/кг
При этом:
кг (3)
Составляем уравнение теплового баланса, приравниваем Q₁ и Q₂. При этом, согласно (3) выражаем m₃ через m₂
(4)
Теперь из 4 выражаем m₂:
(5)
Подставляя в (5) числовые значения, получаем:
кг
ответ: Исходная масса льда 0,201 кг=201 г.
Объяснение:
Пока веревка висит, сила тяжести, действующая на веревку, равна mg; По мере поднятия веревки эта сила тяжести уменьшается до нуля, т.к. длина свисающей веревки уменьшается.
Найдем среднюю силу тяжести F; F=(Fmax-Fmin)/2;
F=(6*10-0)/2=30 Н; A=Fh; A=30*40=1200 Дж
ответ: A=1200 Дж
Второй
Найдем зависимость массы веревки от длины. Назовем ее ρ; ρ=6/40=0.15 кг/м;
Сила, действующая на веревку, изменяется по закону F(l)=0.15gl;
A=FL; По мере поднятия веревки ее длина уменьшается вместе с силой, действующей на веревку. Найдем работу по поднятию с интеграла
A=\int\limits^0_{40} {0.15*10*l} \, dx =-1200
40
∫
0
0.15∗10∗ldx=−1200 Здесь -1200 Дж потому, что в данном случае мы рассчитываем работу силы тяжести, которая отрицательна(мы ведь против нее совершаем работу).
ответ: A=1200 Дж