В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
global34523
global34523
05.03.2023 19:20 •  Физика

Выберите несколько характерных вариантов относительного расположения мотка и магнита и зарисуйте их, указав направление магнитного поля, направление тока и предполагаемое движение мотка относительно магнита

Показать ответ
Ответ:
POLINAFLY
POLINAFLY
12.09.2021 06:45
Задача №1. Запишем условие. Масса плиты равна m = 40,5 кг; плотность мрамора находим в таблице задачника; "ро"1 = 2700кг/м куб: Плотность воды "ро"2 = 1000 кг/м куб. Определить сил у F - ?Решение. Находим силу тяжести, действующую на плиту. Она равна произведению ускорения свободного падения (g = 9,8 м/с кв, округляем до 10м/с кв) на массу плиты. Получим: Fт = gm; Fт = 10м/с кв*40,5 кг = 405 Н. . Теперь, зная массу плиты и плотность мрамора, находим объем плиты. Он равен отношению массы к плотности
V = m/"ро"1; V = 40,5 кг/2700 кг/м куб = 0,015 м куб. На плиту действует архимедова сила. Она равнаF(Aрх) = "ро"2gV. То есть, произведению плотности воды на ускорение свободного падения и объем плиты, "двойка" - это индекс плотности, а не коэффициент.
F(арх) = 1000 кг/м куб *10м/с кв*0,015 м куб = 150 Н. Сила тяжести направлена вниз, а архимедова сила - вверх. Чтобы удержать плиту, необходимо приложить силу, равную разности этих сил: F = Fт - F(арх) ; F = 405Н - 150Н = 255 Н. ответ: плиту нужно поддерживать, чтобы не упала на дно, с силой 255 Н.
Задача №2. Запишем условие. m = 80г = 0,08 кг; Находим в таблице плотность пробкового дерева "ро"1 = 200 кг/м куб; Плотность воды и ускорение силы тяжести мы уже находили: "ро"2 = 1000 кг/м куб и g = 10 Н/кг. (так удобнее записать, но это те же м/с кв! ) Действия похожие. Сила тяжести Fт = gm; F = 10Н/кг*0,08 кг = 0,8 Н; Объем куска дерева: V = m /"ро"2;
V =0,08 кг/ 200 кг/м куб = 0,0004 м куб; Архимедова сила F(арх) = "ро"2*gV
F(арх) = 200 кг/м куб *10Н/кг*0,0004 м куб = 4 Н; Так как архимедова сила больше силы тяжести, то кусок пробкового дерева при погружении его воду, будет всплывать. И, чтобы удержать его под водой, необходимо приложить силу, равную разности между архимедовой силой (4 Н) и силой тяжести (0,8 Н) . Теперь мы уже будем не поддерживать кусок дерева, а давить на него сверху. Чтобы не всплывал. А сила равна F = F(арх) - Fт;
F= 4Н - 0,8Н = 3,2Н. "Питерки" Вам!
0,0(0 оценок)
Ответ:
ЕгорМаксимов
ЕгорМаксимов
25.05.2021 22:29

Відповідь:

Ускорение точки есть производная от скорости по времени

или вторая производная от радиус-вектора по времени:

a = dv/dt = d2

r/dt

2

(1.3)

При решении задач кинематики уравнения (1.1) – (1.3) используются в скалярной форме. Чтобы осуществить такой перевод,

следует определить, какой из видов движения (прямолинейное,

криволинейное, вращательное) рассматривается в данной конкретной задаче. Рассмотрим особенности использования уравнений (1.1) – (1.3) для каждого на этих видов движения.

Прямолинейное движение. В этом случае координатную ось

целесообразно выбрать в направлении движения, а положение

точки характеризовать координатой х, равной расстоянию движущейся точки от начала отсчета. Кинематическое уравнение (1)

примет вид:

x = x (t) (1.4)

Мгновенная скорость

v = dx / dt (1.5)

Мгновенное ускорение

a = dv / dt = d2

x / dt

2

(1.6)

Уравнение равномерного движения

x = x0 + vt, (1.7)

или при x0 = 0 x = vt. (1.8)

Уравнение равнопеременного движения

x = x0 + v0t + at2

/2 (1.9)

где x0 – расстояние от движущейся точки до начала отсчета в момент времени t = 0, v0 – скорость точки в этот момент времени.

Скорость равнопеременного движения

v = v0 + at (1.10)

Исключая время из (1.9) и (1.10), можно получить:

2ax = v2

- v0

2

. (1.11)

Криволинейное движение. Для задания движения точки в

этом случае можно пользоваться двумя В одном из них

указывается траектория точки и уравнение движения точки по

кривой:

S = S ( t ) (1.12)

При этом мгновенная скорость выражается так же, как и в случае прямолинейного движения:

v = dS / dt, (1.13)

а направление мгновенной скорости в каждой точке траектории

совпадает с направлением касательной к траектории в этой же

точке.

Для нахождения мгновенного ускорения a его рассматривают

состоящим из двух составляющих:

тангенциального ускорения aτ, характеризующего изменение

скорости по модулю и направленного по касательной к траектории: aτ = dv / dt, (1.14)

нормального ускорения an, характеризующего изменение

скорости по направлению и направленного к центру кривизны

траектории an = v2 / R (1.15)

где R радиус кривизны траектории. Полное ускорение

a = an + aτ или a = √ an

2

+ aτ

2

. (1.16)

При другом описания криволинейного движения указываются уравнения движения точки, выражающие зависимость

координат точки от времени. В случае плоского движения достаточно указать два уравнения:

x = x (t), y = y (t) (1.17)

Уравнение траектории у = y(x) в этом случае находится исключением времени из уравнений (1.17). Проекции скорости

на оси координат

vx = dx / dt, vy = dy / dt. (1.18)

Полная скорость выражается через проекции соотношением:

v = √ vx

2

+ vy

2

. (1.19)

Проекции полного ускорения на оси координат

ax = dvx / dt = d2

x / dt

2

, ay = dvy / dt = d2y / dt

2

. (1.20)

Полное ускорение

a = √ ax

2

+ ay

2

. (1.21))

Вращательное движение вокруг неподвижной оси

Любая точка вращающегося тела описывает окружность в

плоскости, перпендикулярной оси вращения. Поворот радиусвектора точки за время t определяет угол поворота φ всего тела.

Зависимость φ от t называется кинематическим уравнением

враще-ния: φ = φ (t).

(1.22)

Мгновенная угловая скорость

ω = dφ / dt. (1.23)

Мгновенное угловое ускорение

ε = dω / dt = d2

φ / dt

2

. (1.24)

Уравнения равномерного вращения

φ = ωt; ω = const; ε = 0. (1.25)

Уравнения равнопеременного вращения

φ = ω0t + εt

2

/2. (1.26)

Угловая скорость равнопеременного вращения

ω = ω0 + εt. (1.27)

Исключив время из уравнений (1.26) и (1.27), можно получить:

2εφ = ω2

- ω0

2

. (1.28)

Следует отметить, что формулы (1.22)–(1.28) аналогичны формулам (1.4)–(1.11) для прямолинейного движения точки.

Связь между линейными и угловыми величинами выражается

формулами: длина пути (дуги), пройденного точкой,

S = φR, (1.29)

где φ – угол поворота тела; R – радиус вращения тoчки.

Линейная скорость точки v = ωR. (1.30)

Ускорения точки aτ = εR, (1.31)

an = ω2

R. (1.32)

Приведенные выше соотношения дают возможность по известному закону движения рассчитать и построить траекторию движения тела, найти скорость и ускорение. Если же известны ускорение или скорость как функции времени и начальные условия, то

можно найти закон движения тела.

Пояснення:

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота