Вычисли время, за которое свет пройдёт по световоду длиной =66 км, если предельный угол отражения вещества, из которого выполнена сердцевина световода, пр =60° (показатель преломления оболочки световода равен 1). ответ (округли до сотых): мс.
Обозначим (см. рис.) силу натяжения нити в точке изгиба T0T0 (с обеих сторон эти силы равны, так как блок невесомый, и массой куска нити, касающегося блока, по сравнению с массой всей нити можно пренебречь). В силу того, что нить весомая и нерастяжимая, масса части нити длиной xx равна mн⋅x/lmн⋅x/l. Тогда можно записать уравнения движения кусков нити — вертикального, длины xx, и горизонтального, длины l−xl−x: mнgxl+T1−T0=mнaxlmнgxl+T1−T0=mнaxl, T0−T2=mнal−xlT0−T2=mнal−xl. Сложим эти уравнения и, учитывая, что T1=T2T1=T2, получим mн/l⋅xg=mн/l⋅a(x+l−x)mн/l⋅xg=mн/l⋅a(x+l−x), x=aglx=agl. (1) Ускорение aa одно и то же у всех частей системы. Мы записали систему сразу в скалярном виде, потому что в векторах она будет очень сложной. Теперь запишем уравнения движения грузов: T2=m2aT2=m2a, m1g−T1=m1am1g−T1=m1a. Учитывая, что T1=T2T1=T2, складываем и получаем, получим m1g=(m1+m2)am1g=(m1+m2)a, a=m1m1+m2ga=m1m1+m2g. (2) Тогда из (1) и (2) получаем x=m1m1+m2l=m2m/3+ml=35lx=m1m1+m2l=m2m/3+ml=35l. (3) Подставляя (3) в (1), получаем a=3g/5a=3g/5. (4) Отсюда для силы натяжения получаем T1=T2=m2a=2m335g=25mgT1=T2=m2a=2m335g=25mg. (5) Соотношения (3), (4), (5) дают решение задачи. Источник: https://earthz.ru/solves/Zadacha-po-fizike-4784
Статикой называется раздел механики, изучающий условия равновесия тел.
Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс.
Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю.
Рисунок 1.14.1.
Равновесие твердого тела под действием трех сил. При вычислении равнодействующей все силы приводятся к одной точке C
На рис. 1.14.1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке.
Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил.
Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.
Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы.
Произведение модуля силы на плечо d называется моментом силы M. Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки
Объяснение:
Обозначим (см. рис.) силу натяжения нити в точке изгиба T0T0 (с обеих сторон эти силы равны, так как блок невесомый, и массой куска нити, касающегося блока, по сравнению с массой всей нити можно пренебречь). В силу того, что нить весомая и нерастяжимая, масса части нити длиной xx равна mн⋅x/lmн⋅x/l. Тогда можно записать уравнения движения кусков нити — вертикального, длины xx, и горизонтального, длины l−xl−x: mнgxl+T1−T0=mнaxlmнgxl+T1−T0=mнaxl, T0−T2=mнal−xlT0−T2=mнal−xl. Сложим эти уравнения и, учитывая, что T1=T2T1=T2, получим mн/l⋅xg=mн/l⋅a(x+l−x)mн/l⋅xg=mн/l⋅a(x+l−x), x=aglx=agl. (1) Ускорение aa одно и то же у всех частей системы. Мы записали систему сразу в скалярном виде, потому что в векторах она будет очень сложной. Теперь запишем уравнения движения грузов: T2=m2aT2=m2a, m1g−T1=m1am1g−T1=m1a. Учитывая, что T1=T2T1=T2, складываем и получаем, получим m1g=(m1+m2)am1g=(m1+m2)a, a=m1m1+m2ga=m1m1+m2g. (2) Тогда из (1) и (2) получаем x=m1m1+m2l=m2m/3+ml=35lx=m1m1+m2l=m2m/3+ml=35l. (3) Подставляя (3) в (1), получаем a=3g/5a=3g/5. (4) Отсюда для силы натяжения получаем T1=T2=m2a=2m335g=25mgT1=T2=m2a=2m335g=25mg. (5) Соотношения (3), (4), (5) дают решение задачи. Источник: https://earthz.ru/solves/Zadacha-po-fizike-4784
Элементы статики
Назад Вперед.
Условия равновесия тел
Статикой называется раздел механики, изучающий условия равновесия тел.
Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс.
Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю.
Рисунок 1.14.1.
Равновесие твердого тела под действием трех сил. При вычислении равнодействующей все силы приводятся к одной точке C
На рис. 1.14.1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке.
Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил.
Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.
Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы.
Произведение модуля силы на плечо d называется моментом силы M. Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки