Выполняя лабораторную работу, ученик изучал движение тела по наклонной плоскости из состояния покоя υ 0 = 0. Зависимость пройденного пути от времени движения
представлена в таблице
№
опыт
а
Перемещени
е
s, см
Время
движения
t,с
Ускорение
движения тела
а, м/с 2
Среднее ускорение
движения тела
а ср, , м/с 2
1 30 1,3
2 30 1,5
3 30 1,7
А) вычислить ускорение движения тела для каждого опыта
(2)
В) вычислить среднее ускорение движения тела
найдём за какое время тело преодолеет расстояние 10 м. Пусть скорость тела V. Тогда её проекция на ось х будет Vcos30°. это горизонтальная скорость и она не меняется со временем. t0=s/Vcos30°
Значит в момент времени t0 тело должно быть не ниже H.
В начальный момент времени вертикальная скорость тела была Vsin30°
высота тела меняется по закону
H(t)=h+V* sin30° *t -gt²/2
H(t0)=h+V* sin30° *t0 -gt0²/2=H
V* sin30° *t0 -gt0²/2=H-h
подставляем t0=s/Vcos30
V* sin30° *s/(V*cos30°) -g( s/Vcos30 )²/2=H-h
s*tg30° -gs²/(2V²cos²30° )=H-h
gs²/(2V²cos²30° )= s*tg30+h-H
V²=(gs²/2cos²30°)/( s*tg30+h-H)=(10 м/с² *10² м²/2 *(√3/2)²)/(10м *(√3/3)+2м-6м )=(10³м³/с² *4/6)/(5,77м-4м)=377м²/с²
V=19,4м/с
r = Σr₁m₁ / Σm₁, где ₁ -- это я так записал индекс i.
Рассмотрим центр масс системы из двух тел:
Если начало отсчёта поместить в центр масс, тогда получим:
r₁·m₁ + r₂·m₂ = 0 или r₁·m₁ = -r₂·m₂.
Т. е. оба тела и центр масс расположены на одной прямой, при этом центр масс находится на отрезке соединяющем два тела.
Ну а если тела и центр масс расположены на одной прямой, можем спокойно перейти от векторов и их модулям.
В нашем случае: |r₁| = L₁, |-r₂| = L₂.
Вот и получаем: m₁·L₁ = m₂·L₂, где L₁ + L₂ = L.