так если температура идеального газа уменьшится в 3 раза ,то и давление газа на стенки сосуда тоже уменьшится. Если будет антологичная задача ,только со значениями ,можно проверить подставив их в 1 формулу можно конечно по этой формуле ,выражать от сюда "p" и так делее p=1/3nmv^2 ,но это немного проблемно ,лучше воспользоваться другой формулой ,но если нужно ты выражай из самой первой формулы . Воспользуемся формулой идеального газа PV=nRT n-число молей газа P- давление газа V-объём газа T-температура газа R-постоянная (≈0,082 л*атм/мол*К) так как сосуд закрытый ,а газ занимает весь предоставленный ему объём ,то n=C R=C V=C C-const (постоянная) преобразуем и получаем p1/T1=p2/T2 T2=T1/3 Теперь просто ищем p2 но нужно учитывать,что p/T=C
В верхней точке скорость тела становится равной нулю, а потом тело начинает движение вниз. Время, через которое скорость по модулю снова станет равной υ_0, будет складываться из времени t_1 и времени t_2:
Чтобы найти расстояние S, нужно из расстояния s' (перемещение тела при спуске) отнять расстояние s (перемещение тела при подъёме). s < s', т.к. a_1 по модулю > а_2. Итак:
S = s' - s
s = υ_0²/(2*a_1)
s' = a_2*t_2²/2 = a_2*(υ_0/a_2)²/2 = υ_0²/(2*a_2) => S = [υ_0²/(2*a_2)] - [υ_0²/(2*a_1)] = [5²/(2*10*(0,5 - 0,5*√3/2))] - [5²/(2*10*(0,5 + 0,5*√3/2))] = 17,32... = 17 м
формула давления идеального газа
так если температура идеального газа уменьшится в 3 раза ,то и давление газа на стенки сосуда тоже уменьшится.
Если будет антологичная задача ,только со значениями ,можно проверить подставив их в 1 формулу
можно конечно по этой формуле ,выражать от сюда "p" и так делее
p=1/3nmv^2 ,но это немного проблемно ,лучше воспользоваться другой формулой ,но если нужно ты выражай из самой первой формулы .
Воспользуемся формулой идеального газа
PV=nRT
n-число молей газа
P- давление газа
V-объём газа
T-температура газа
R-постоянная (≈0,082 л*атм/мол*К)
так как сосуд закрытый ,а газ занимает весь предоставленный ему объём ,то
n=C
R=C
V=C
C-const (постоянная)
преобразуем и получаем
p1/T1=p2/T2
T2=T1/3
Теперь просто ищем p2
но нужно учитывать,что p/T=C
и ответ будет уменьшилось в 3 раза
Дано:
α = 30°
υ_0 = 5 м/с
μ = 0,5
g = 10 м/с²
τ, S - ?
При подъёме тело движется с торможением, равным:
mg*sinα + μ*mg*cosα = m*a_1 | : m
g*(sinα + μ*cosα) = a_1
При спуске ускорение равно:
mg*sinα - μ*mg*cosα = m*a_2 | : m
g*(sinα - μ*cosα) = a_2
В верхней точке скорость тела становится равной нулю, а потом тело начинает движение вниз. Время, через которое скорость по модулю снова станет равной υ_0, будет складываться из времени t_1 и времени t_2:
τ = t_1 + t_2
υ = υ_0 - a_1*t_1, υ = 0 => υ_0 = a_1*t_1 =>
=> t_1 = υ_0/a_1
υ' = υ_0' + a_2*t_2, υ_0' = 0, υ' = υ_0 =>
=> t_2 = υ_0/a_2
τ = t_1 + t_2 = (υ_0/a_1) + (υ_0/a_2) = υ_0/(g*(sinα + μ*cosα)) + υ_0/(g*(sinα - μ*cosα)) = 5/(10*(0,5 + 0,5*√3/2)) = 5/(10*(0,5 - 0,5*√3/2)) = 8 с
Чтобы найти расстояние S, нужно из расстояния s' (перемещение тела при спуске) отнять расстояние s (перемещение тела при подъёме). s < s', т.к. a_1 по модулю > а_2. Итак:
S = s' - s
s = υ_0²/(2*a_1)
s' = a_2*t_2²/2 = a_2*(υ_0/a_2)²/2 = υ_0²/(2*a_2) => S = [υ_0²/(2*a_2)] - [υ_0²/(2*a_1)] = [5²/(2*10*(0,5 - 0,5*√3/2))] - [5²/(2*10*(0,5 + 0,5*√3/2))] = 17,32... = 17 м
ответ: 8 с, 17 м.