Направим ось ох вдоль поверхности стола. на доску m1 действуют: сила тяжести f1, сила трения fтр со стороны бруска и искомая сила f (для простоты полагаем что она параллельна поверхности) . на брусок m2 действуют: сила тяжести f2 и сила трения fтр. сила трения бруска о доску равна f=nn, где n коэффициент трения, n прижимающая сила. n найдем из уравнения движения бруска по оси оу (не движется. т. е. а (у) =0). m2a(y)=m2g-n=0, отсюда n=m2g и сила трения fтр=nm2g. трение доски о поверхность отсутствует. запишем уравнения движения доски и бруска по оси ох. (m1+m2)*a(x)=f-fтр=f-nm2g (1) m2*a(x)=fтр=nm2g (2). из (2) a(x)=ng и из (1) f=(m1+m2)*ng+nm2g=ng(m1+2m2).
a1 = a2 = a3, т.к. нить нерастяжимая
T01 = T02 = T0 по 3 з. Н.
T2 = T3 = T по 3 з. Н.
OX (1): T0 - um1g - T = m1a
OX (2): T - um2g = m2a
OY (3): m0g - T0 = m0a
(1) + (3):
-um1g - T + m0g = a (m1 + m0)
с учетом силы натяжения T = m2a + um2g из (2):
-um1g - m2a - um2g + m0g = a (m1 + m0)
a (m0 + m1 + m2) = m0g - um1g - um2g
a = (m0g - ug (m1 + m2)) / (m0 + m1 + m2)
a = g (m0 - u (m1 + m2)) / (m0 + m1 + m2) (!)
2.
с учетом формулы ускорения в (2):
T - um2g = m2g (m0 - u (m1 + m2)) / (m0 + m1 + m2)
T = m2g (m0 + u (1 - m1 + m2)) / (m0 + m1 + m2) (!)