Деформациями называются любые изменения формы, размеров и объема тела. Деформация определяет конечный результат движения частей тела друг относительно друга.ОПРЕДЕЛЕНИЕУпругими деформациями называются деформации, полностью исчезающие после устранения внешних сил.
Пластическими деформациями называются деформации, полностью или частично сохраняющиеся после прекращения действии внешних сил.
к упругим и пластическим деформациям зависит от природы вещества, из которого состоит тело, условий, в которых оно находится его изготовления. Например, если взять разные сорта железа или стали, то у них можно обнаружить совершенно разные упругие и пластичные свойства. При обычных комнатных температурах железо является очень мягким, пластичным материалом; закаленная сталь, наоборот, — твердый, упругий материал. Пластичность многих материалов представляет собой условие для их обработки, для изготовления из них нужных деталей. Поэтому она считается одним из важнейших технических свойств твердого вещества.
При деформации твердого тела происходит смещение частиц (атомов, молекул или ионов) из первоначальных положений равновесия в новые положения. При этом изменяются силовые взаимодействия между отдельными частицами тела. В результате в деформированном теле возникают внутренние силы, препятствующие его деформации.
Силы упругостиОПРЕДЕЛЕНИЕСилы упругости – это силы, возникающие в теле при его упругой деформации и направленные в сторону, противоположную смещению частиц при деформации.
Силы упругости имеют электромагнитную природу. Они препятствуют деформациям и направлены перпендикулярно поверхности соприкосновения взаимодействующих тел, а если взаимодействуют такие тела, как пружины, нити, то силы упругости направлены вдоль их оси.
Силу упругости, действующую на тело со стороны опоры, часто называют силой реакции опоры.
ОПРЕДЕЛЕНИЕДеформация растяжения (линейная деформация) – это деформация, при которой происходит изменение только одного линейного размера тела. Ее количественными характеристиками являются абсолютное и относительное удлинение.
Абсолютное удлинение:
где и длина тела в деформированном и недеформированном состоянии соответственно.
Относительное удлинение:
Закон Гука
Небольшие и кратковременные деформации с достаточной степенью точности могут рассматриваться как упругие. Для таких деформаций справедлив закон Гука:
Сила упругости, возникающая при деформации тела прямо пропорциональна абсолютному удлинению тела и направлена в сторону, противоположную смещению частиц тела:
где проекция силы на ось жесткость тела, зависящая от размеров тела и материала, из которого оно изготовлено, единица жесткости в системе СИ Н/м.
Примеры решения задачПРИМЕР 1ЗаданиеПружина жесткостью Н/м в ненагруженном состоянии имеет длину 25 см. Какова будет длина пружины, если к ней подвесить груз массой 2 кг?РешениеСделаем рисунок.На груз, подвешенный на пружине, действуют сила тяжести и сила упругости .По второму закону Ньютона: Спроектировав это векторное равенство на координатную ось , получим: или По закону Гука сила упругости: поэтому можно записать: откуда длина деформированной пружины: Переведем в систему СИ значение длины недеформированной пружины см м.Ускорение свободного падения м/с .Подставив в формулу численные значения физических величин, вычислим: ответДлина деформированной пружины составит 29 см.ПРИМЕР 2ЗаданиеПо горизонтальной поверхности передвигают тело массой 3 кг с пружины жесткостью Н/м. На сколько удлинится пружина, если под ее действием при равноускоренном движении за 10 с скорость тела изменилась от 0 до 20 м/с? Трением пренебречь.РешениеСделаем рисунок.На тело действуют сила тяжести , сила реакции опоры и сила упругости пружины .По второму закону Ньютона: Выберем систему координат, как показано на рисунке и запишем это векторное равенство в проекциях на оси координат: Для решения задачи воспользуемся первым уравнением системы.По закону Гука сила упругости пружины: Ускорение тела: Таким образом: откуда абсолютное удлинение пружины: ответПружина удлинится на 1,5 см.
Одним из основоположников о молекулярном строении вещества является русский ученый М.В. Ломоносов. Согласно его теории: все тела состоят из молекул; молекулы находятся в постоянном движении; молекулы взаимодействуют между собой. Хаотическое движение молекул называют тепловым движением. Интенсивность теплового движения возрастает с увеличением температуры. Между молекулами существуют силы притяжения и отталкивания. Свойства вещества и его агрегатное состояние зависят от того, что преобладает: силы притяжения или тепловое движение. Вещества могут находиться в трех агрегатных состояниях: жидком, твердом и газообразном. В твердых телах расстояние между молекулами маленькое и преобладают силы взаимодействия. Поэтому твердые тела обладают свойством сохранять форму и объем. Молекулы твердых тел находятся в постоянном движении, но каждая молекула движется около положения равновесия. В жидкостях расстояние между молекулами побольше, значит меньше и силы взаимодействия. Поэтому жидкость сохраняет объем, но легко меняет форму. В газах силы взаимодействия совсем невелики, т.к. расстояние между молекулами газа в несколько десятков раз больше размеров самих молекул. Поэтому газ занимает весь предоставленный ему объем. О строении вещества позволяют судить некоторые явления и опыты: Стальной шарик, который свободно проходит в кольцо, после нагревания в нем застревает. При нагревании жидкости увеличивается уровень ее в пробирке. Мяч можно сжать. Эти опыты позволяют сделать вывод, что все тела состоят из частиц, между которыми есть промежутки. Такие частицы получили название молекул. Молекулы одного и того же вещества одинаковы. Молекулы в свою очередь тоже делимы. Частицы, из которых состоят молекулы, называются атомами. Атомы также имеют составные части. В подтверждение того, что молекулы движутся, можно провести опыт: если в комнату внести сильно пахнущее вещество, то через некоторое время его запах распространится по всей комнате. Если в чай добавить молоко, то, даже не перемешивая жидкости, через некоторое время можно увидеть, что жидкость стала однородной. Взаимное проникновение соприкасающиxся веществ друг в друга вследствие беспорядочного движения частиц вещества называют диффузией. В газах диффузия происходит быстрее, чем в жидкостях. Объясняется это тем, что расстояние между молекулами в газах больше, чем в жидкостях. В твердых телах тоже происходит диффузия, но для этого требуется много времени. При спайке металлических изделий используется диффузия. На явлении диффузии основана засолка овощей, рыбы, сала. Благодаря диффузии молекулы воздуха попадают в воду. Явление смачивания можно объяснить притяжением молекул друг к другу. Когда жидкость смачивает тело, то сила притяжения между молекулами тела и жидкости больше, чем сила притяжения между молекулами жидкости. Явление смачивания учитывается, например, при изготовлении бумаги, чтобы ее смачивали чернила. О том, что молекулы отталкиваются, говорит тот факт, что сжатое тело стремится распрямиться, а жидкость трудно сжать. Знания о строении вещества позволяют не только объяснять физические явления, но и управлять ими. Зная строение тела, можно создавать новые вещества с уже заданными свойствами, например пластмасса и резина.
Пластическими деформациями называются деформации, полностью или частично сохраняющиеся после прекращения действии внешних сил.
к упругим и пластическим деформациям зависит от природы вещества, из которого состоит тело, условий, в которых оно находится его изготовления. Например, если взять разные сорта железа или стали, то у них можно обнаружить совершенно разные упругие и пластичные свойства. При обычных комнатных температурах железо является очень мягким, пластичным материалом; закаленная сталь, наоборот, — твердый, упругий материал. Пластичность многих материалов представляет собой условие для их обработки, для изготовления из них нужных деталей. Поэтому она считается одним из важнейших технических свойств твердого вещества.
При деформации твердого тела происходит смещение частиц (атомов, молекул или ионов) из первоначальных положений равновесия в новые положения. При этом изменяются силовые взаимодействия между отдельными частицами тела. В результате в деформированном теле возникают внутренние силы, препятствующие его деформации.
Различают деформации растяжения (сжатия), сдвига, изгиба, кручения.
Силы упругостиОПРЕДЕЛЕНИЕСилы упругости – это силы, возникающие в теле при его упругой деформации и направленные в сторону, противоположную смещению частиц при деформации.Силы упругости имеют электромагнитную природу. Они препятствуют деформациям и направлены перпендикулярно поверхности соприкосновения взаимодействующих тел, а если взаимодействуют такие тела, как пружины, нити, то силы упругости направлены вдоль их оси.
Силу упругости, действующую на тело со стороны опоры, часто называют силой реакции опоры.
ОПРЕДЕЛЕНИЕДеформация растяжения (линейная деформация) – это деформация, при которой происходит изменение только одного линейного размера тела. Ее количественными характеристиками являются абсолютное и относительное удлинение.Абсолютное удлинение:
где и длина тела в деформированном и недеформированном состоянии соответственно.
Относительное удлинение:
Небольшие и кратковременные деформации с достаточной степенью точности могут рассматриваться как упругие. Для таких деформаций справедлив закон Гука:
Сила упругости, возникающая при деформации тела прямо пропорциональна абсолютному удлинению тела и направлена в сторону, противоположную смещению частиц тела:где проекция силы на ось жесткость тела, зависящая от размеров тела и материала, из которого оно изготовлено, единица жесткости в системе СИ Н/м.
Примеры решения задачПРИМЕР 1ЗаданиеПружина жесткостью Н/м в ненагруженном состоянии имеет длину 25 см. Какова будет длина пружины, если к ней подвесить груз массой 2 кг?РешениеСделаем рисунок.На груз, подвешенный на пружине, действуют сила тяжести и сила упругости .По второму закону Ньютона: Спроектировав это векторное равенство на координатную ось , получим: или По закону Гука сила упругости: поэтому можно записать: откуда длина деформированной пружины: Переведем в систему СИ значение длины недеформированной пружины см м.Ускорение свободного падения м/с .Подставив в формулу численные значения физических величин, вычислим: ответДлина деформированной пружины составит 29 см.ПРИМЕР 2ЗаданиеПо горизонтальной поверхности передвигают тело массой 3 кг с пружины жесткостью Н/м. На сколько удлинится пружина, если под ее действием при равноускоренном движении за 10 с скорость тела изменилась от 0 до 20 м/с? Трением пренебречь.РешениеСделаем рисунок.На тело действуют сила тяжести , сила реакции опоры и сила упругости пружины .По второму закону Ньютона: Выберем систему координат, как показано на рисунке и запишем это векторное равенство в проекциях на оси координат: Для решения задачи воспользуемся первым уравнением системы.По закону Гука сила упругости пружины: Ускорение тела: Таким образом: откуда абсолютное удлинение пружины: ответПружина удлинится на 1,5 см.Одним из основоположников о молекулярном строении вещества является русский ученый М.В. Ломоносов. Согласно его теории:
все тела состоят из молекул;
молекулы находятся в постоянном движении;
молекулы взаимодействуют между собой.
Хаотическое движение молекул называют тепловым движением. Интенсивность теплового движения возрастает с увеличением температуры.
Между молекулами существуют силы притяжения и отталкивания. Свойства вещества и его агрегатное состояние зависят от того, что преобладает: силы притяжения или тепловое движение.
Вещества могут находиться в трех агрегатных состояниях: жидком, твердом и газообразном.
В твердых телах расстояние между молекулами маленькое и преобладают силы взаимодействия. Поэтому твердые тела обладают свойством сохранять форму и объем. Молекулы твердых тел находятся в постоянном движении, но каждая молекула движется около положения равновесия.
В жидкостях расстояние между молекулами побольше, значит меньше и силы взаимодействия. Поэтому жидкость сохраняет объем, но легко меняет форму.
В газах силы взаимодействия совсем невелики, т.к. расстояние между молекулами газа в несколько десятков раз больше размеров самих молекул. Поэтому газ занимает весь предоставленный ему объем.
О строении вещества позволяют судить некоторые явления и опыты:
Стальной шарик, который свободно проходит в кольцо, после нагревания в нем застревает.
При нагревании жидкости увеличивается уровень ее в пробирке.
Мяч можно сжать.
Эти опыты позволяют сделать вывод, что все тела состоят из частиц, между которыми есть промежутки. Такие частицы получили название молекул.
Молекулы одного и того же вещества одинаковы.
Молекулы в свою очередь тоже делимы. Частицы, из которых состоят молекулы, называются атомами. Атомы также имеют составные части.
В подтверждение того, что молекулы движутся, можно провести опыт: если в комнату внести сильно пахнущее вещество, то через некоторое время его запах распространится по всей комнате. Если в чай добавить молоко, то, даже не перемешивая жидкости, через некоторое время можно увидеть, что жидкость стала однородной. Взаимное проникновение соприкасающиxся веществ друг в друга вследствие беспорядочного движения частиц вещества называют диффузией.
В газах диффузия происходит быстрее, чем в жидкостях. Объясняется это тем, что расстояние между молекулами в газах больше, чем в жидкостях. В твердых телах тоже происходит диффузия, но для этого требуется много времени. При спайке металлических изделий используется диффузия. На явлении диффузии основана засолка овощей, рыбы, сала. Благодаря диффузии молекулы воздуха попадают в воду.
Явление смачивания можно объяснить притяжением молекул друг к другу. Когда жидкость смачивает тело, то сила притяжения между молекулами тела и жидкости больше, чем сила притяжения между молекулами жидкости. Явление смачивания учитывается, например, при изготовлении бумаги, чтобы ее смачивали чернила.
О том, что молекулы отталкиваются, говорит тот факт, что сжатое тело стремится распрямиться, а жидкость трудно сжать.
Знания о строении вещества позволяют не только объяснять физические явления, но и управлять ими. Зная строение тела, можно создавать новые вещества с уже заданными свойствами, например пластмасса и резина.