Применим теорему о циркуляции вектора для вычисления простейшего магнитного поля – бесконечно длинного соленоида, представляющего собой тонкий провод, намотанный плотно виток к витку на цилиндрический каркас (рис. 2.11).
Рис. 2.11
Соленоид можно представить в виде системы одинаковых круговых токов с общей прямой осью.
Бесконечно длинный соленоид симметричен любой, перпендикулярной к его оси плоскости. Взятые попарно (рис. 2.12), симметричные относительно такой плоскости витки создают поле, в котором вектор перпендикулярен плоскости витка, т.е. линии магнитной индукции имеют направление параллельное оси соленоида внутри и вне его.
Рис. 2.12
Из параллельности вектора оси соленоида вытекает, что поле как внутри, так и вне соленоида должно быть однородным.
Возьмём воображаемый прямоугольный контур 1–2–3–4–1 и разместим его в соленоиде, как показано на рисунке 2.13.
Рис. 2.13
Второй и четвёртый интегралы равны нулю, т.к. вектор перпендикулярен направлению обхода, т.е .
Возьмём участок 3–4 – на большом расстоянии от соленоида, где поле стремится к нулю; и пренебрежём третьим интегралом, тогда
где – магнитная индукция на участке 1–2 – внутри соленоида, – магнитная проницаемость вещества.
Если отрезок 1–2 внутри соленоида, контур охватывает ток:
где n – число витков на единицу длины, I – ток в соленоиде (в проводнике).
Тогда магнитная индукция внутри соленоида:
, (2.7.1)
Вне соленоида:
и , т.е. .
Бесконечно длинный соленоид аналогичен плоскому конденсатору – и тут, и там поле однородно и сосредоточено внутри.
Произведение nI – называется число ампер витков на метр.
У конца полубесконечного соленоида, на его оси магнитная индукция равна:
, (2.7.2)
Практически, если длина соленоида много больше, чем его диаметр, формула (2.7.1) справедлива для точек вблизи середины, формула (2.7.2) для точек около конца.
Если же катушка короткая, что обычно и бывает на практике, то магнитная индукция в любой точке А, лежащей на оси соленоида, направлена вдоль оси (по правилу буравчика) и численно равна алгебраической сумме индукций магнитных полей создаваемых в точке А всеми витками. В этом случае имеем:
· В точке, лежащей на середине оси соленоида магнитное поле будет максимальным:
, (2.7.3)
где L – длина соленоида, R – радиус витков.
· В произвольной точке конечного соленоида (рис. 2.14) магнитную индукцию можно найти по формуле
, (2.7.4)
Рис. 2.14
На рисунке 2.15 изображены силовые линии магнитного поля : а) металлического стержня; б) соленоида; в) железные опилки, рассыпанные на листе бумаги, помещенной над магнитом, стремятся вытянуться вдоль силовых линий; г) магнитные полюсы соленоида.
Q (количество теплоты) на плавление потребуется 340 КДж, а на испарение воды (Q1) взятой при 0 градусов по Цельсия - 2720 КДж или 2,72 М (мега) Дж. Всего потребуется (Qобщее) 3060 КДж или 3,06 МДж или 3060000 Дж.
Решение: Qобщее = Q + Q1; Q = температура плавления умножить на массу воды (лямда m (масса)); Q1 = Q2 (Нагревание) + Q3 (Испарение); Q2 = с (Удельная теплоёмкость) m (t2 - t1) Q3 = r(у кого-то в учебниках L (Удельная теплота парообразования)) m
Применим теорему о циркуляции вектора для вычисления простейшего магнитного поля – бесконечно длинного соленоида, представляющего собой тонкий провод, намотанный плотно виток к витку на цилиндрический каркас (рис. 2.11).
Рис. 2.11
Соленоид можно представить в виде системы одинаковых круговых токов с общей прямой осью.
Бесконечно длинный соленоид симметричен любой, перпендикулярной к его оси плоскости. Взятые попарно (рис. 2.12), симметричные относительно такой плоскости витки создают поле, в котором вектор перпендикулярен плоскости витка, т.е. линии магнитной индукции имеют направление параллельное оси соленоида внутри и вне его.
Рис. 2.12
Из параллельности вектора оси соленоида вытекает, что поле как внутри, так и вне соленоида должно быть однородным.
Возьмём воображаемый прямоугольный контур 1–2–3–4–1 и разместим его в соленоиде, как показано на рисунке 2.13.
Рис. 2.13
Второй и четвёртый интегралы равны нулю, т.к. вектор перпендикулярен направлению обхода, т.е .
Возьмём участок 3–4 – на большом расстоянии от соленоида, где поле стремится к нулю; и пренебрежём третьим интегралом, тогда
где – магнитная индукция на участке 1–2 – внутри соленоида, – магнитная проницаемость вещества.
Если отрезок 1–2 внутри соленоида, контур охватывает ток:
где n – число витков на единицу длины, I – ток в соленоиде (в проводнике).
Тогда магнитная индукция внутри соленоида:
, (2.7.1)
Вне соленоида:
и , т.е. .
Бесконечно длинный соленоид аналогичен плоскому конденсатору – и тут, и там поле однородно и сосредоточено внутри.
Произведение nI – называется число ампер витков на метр.
У конца полубесконечного соленоида, на его оси магнитная индукция равна:
, (2.7.2)
Практически, если длина соленоида много больше, чем его диаметр, формула (2.7.1) справедлива для точек вблизи середины, формула (2.7.2) для точек около конца.
Если же катушка короткая, что обычно и бывает на практике, то магнитная индукция в любой точке А, лежащей на оси соленоида, направлена вдоль оси (по правилу буравчика) и численно равна алгебраической сумме индукций магнитных полей создаваемых в точке А всеми витками. В этом случае имеем:
· В точке, лежащей на середине оси соленоида магнитное поле будет максимальным:
, (2.7.3)
где L – длина соленоида, R – радиус витков.
· В произвольной точке конечного соленоида (рис. 2.14) магнитную индукцию можно найти по формуле
, (2.7.4)
Рис. 2.14
На рисунке 2.15 изображены силовые линии магнитного поля : а) металлического стержня; б) соленоида; в) железные опилки, рассыпанные на листе бумаги, помещенной над магнитом, стремятся вытянуться вдоль силовых линий; г) магнитные полюсы соленоида.
Решение:
Qобщее = Q + Q1;
Q = температура плавления умножить на массу воды (лямда m (масса));
Q1 = Q2 (Нагревание) + Q3 (Испарение);
Q2 = с (Удельная теплоёмкость) m (t2 - t1)
Q3 = r(у кого-то в учебниках L (Удельная теплота парообразования)) m
Q =340000 Дж х 1 кг = 340000 Дж = 340 КДж
Q2 = 4200 х 1 кг (100 - 0) = 420000 Дж = 420 Кдж
Q3 = 2300000 Дж/кг х 1 кг = 2300000 Дж = 2300 КДж
Q1 = 420 КДж + 2300 КДж = 2720 КДж
Qобщее = 340 КДж + 2720 КДж = 3060 КДж = 3,06 МДж
ответ: Q = 3,06 МДж.