ответ: г) Відповідно до теорії Бора атоми випромінюють світло окремими квантами.
Пояснение: Согласно одному из постулатов Бора излучение и поглощение энергии атомом происходит при скачкообразном переходе из одного стационарного состояния в другое, при этом поглощаются либо выделяются дискретные порции энергии (световые кванты)
почему неверны остальные ответы:
Как классический пример применения принципа корпускулярно-волнового дуализма, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства классических электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла. Также явление поляризации света свидетельствует в пользу его волновой природы.
Корпускулярные свойства света проявляются в закономерностях равновесного теплового излучения, при фотоэффекте и в эффекте Комптона, в явлениях химического действия света. Фотон ведёт себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).
Также, на каждый из двух шариков будут действовать силы: тяжести, Кулона и натяжения нити (на картинке). Так как шарики находятся в покое, то их векторная сумма равна нулю:
ответ: г) Відповідно до теорії Бора атоми випромінюють світло окремими квантами.
Пояснение: Согласно одному из постулатов Бора излучение и поглощение энергии атомом происходит при скачкообразном переходе из одного стационарного состояния в другое, при этом поглощаются либо выделяются дискретные порции энергии (световые кванты)
почему неверны остальные ответы:
Как классический пример применения принципа корпускулярно-волнового дуализма, свет можно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойства классических электромагнитных волн. Свет демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной световой волны. Например, даже одиночные фотоны, проходящие через двойную щель, создают на экране интерференционную картину, определяемую уравнениями Максвелла. Также явление поляризации света свидетельствует в пользу его волновой природы.
Корпускулярные свойства света проявляются в закономерностях равновесного теплового излучения, при фотоэффекте и в эффекте Комптона, в явлениях химического действия света. Фотон ведёт себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).
[15.05, 1:04] Мамака: Дано:
q₂=-112нКл=-112·10⁻⁹Кл
q=-46нКл=-46·10⁻⁹Кл
A=44°
r=44.9см=44.9·10⁻²м
Найти:
q₁, N₂, L, m - ?
Заряд равен произведению заряда одного электрона на их количество:
\begin{gathered}|q_2|=|e|N_2 \\\ N_2= \dfrac{|q_2|}{|e|}\end{gathered}∣q2∣=∣e∣N2 N2=∣e∣∣q2∣
Выражаем и находим число электронов:
N_2= \dfrac{112\cdot10^{-9}}{1.6\cdot10^{-19}} =7\cdot10^{11}N2=1.6⋅10−19112⋅10−9=7⋅1011
После соприкосновения аров их заряд стал одинаковым и равным среднему арифметическому исходных зарядов:
q= \dfrac{q_1+q_2}{2}q=2q1+q2
Величина первого заряда:
\begin{gathered}q_1=2q-q_2 \\\ q_1=2\cdot(-46)-(-112)=20(nKl)\end{gathered}q1=2q−q2 q1=2⋅(−46)−(−112)=20(nKl)
После расхождения нити образуют равнобедренный треугольник (на картинке), проведя биссектрису в котором можно записать выражение для синуса:
\sin \frac{A}{2} = \dfrac{ \frac{r}{2} }{L}sin2A=L2r
Тогда, длина нити:
\begin{gathered}L= \dfrac{ r}{2\sin \frac{A}{2} } \\\ L= \dfrac{ 44.9\cdot10^{-2}}{2\sin22^\circ } \approx0.6(m)\end{gathered}L=2sin2Ar L=2sin22∘44.9⋅10−2≈0.6(m)
Также, на каждый из двух шариков будут действовать силы: тяжести, Кулона и натяжения нити (на картинке). Так как шарики находятся в покое, то их векторная сумма равна нулю:
m\vec{g}+\vec{F_K}+\vec{T}=0mg+FK+T=0
Проецируя выражение на пару осей, получим:
\begin{gathered}y: \ mg=T\sin \alpha \\\ x: \ F_K=T\cos \alpha \end{gathered}y: mg=Tsinα x: FK=Tcosα
Разделим почленно первое равенство на второе и выразим m:
\begin{gathered} \dfrac{mg}{F_K} =\mathrm{tg} \alpha \\\ m= \dfrac{F_K\mathrm{tg} \alpha }{g} \end{gathered}FKmg=tgα m=gFKtgα
Угол \alpha =90^\circ- \frac{A}{2}α=90∘−2A , так как в сумме пара углов при основании составляет 180^\circ-A180∘−A
Определяем силу Кулона:
\begin{gathered}F_K=k \dfrac{|q|^2}{r^2} \\\ F_K=9\cdot10^9\cdot \dfrac{|-46\cdot10^{-9}|^2}{(44.9\cdot10^{-2})^2} \approx 9.45\cdot 10^{-5}(N)\end{gathered}FK=kr2∣q∣2
Определяем m:
m= \dfrac{9.45\cdot 10^{-5}\cdot\mathrm{tg} (90^\circ- 22^\circ) }{9.8}\approx23.87\cdot10^{-6}(kg)=23.87(mg)m=9.89.45⋅10−5⋅tg(90∘−22∘)≈23.87⋅10−6(kg)=23.87(mg)
ответ: q₁=20нКл, N₂=7·10¹¹, L=0.6м, m=23.87мг