В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
Кира11101010
Кира11101010
22.09.2020 01:29 •  Физика

Яку роботу потрібно виконати для переміщення провідника довжиною 40см, якщо в ньому протікає струм силою 21А, в однорідному манітному полі з індукцією 1.2 Тл на 25 см? Провідник рухається перпендикулярно.​

Показать ответ
Ответ:
Nastia2k
Nastia2k
18.12.2022 07:36

Для описания этих изменений вводят функцию состояния - внутреннюю энергию U и две функции перехода - теплоту Q и работу A. Математическая формулировка первого закона:

dU = Q - A (дифференциальная форма) (2.1)

U = Q - A (интегральная форма) (2.2)

Буква в уравнении (2.1) отражает тот факт, что Q и A - функции перехода и их бесконечно малое изменение не является полным дифференциалом.

В уравнениях (2.1) и (2.2) знаки теплоты и работы выбраны следующим образом. Теплота считается положительной, если она передается системе. Напротив, работа считается положительной, если она совершается системой над окружающей средой.

Существуют разные виды работы: механическая, электрическая, магнитная, поверхностная и др. Бесконечно малую работу любого вида можно представить как произведение обобщенной силы на приращение обобщенной координаты, например:

Aмех = p. dV; Aэл = . dе; Aпов = . dW (2.3)

( - электрический потенциал, e - заряд, - поверхностное натяжение, W - площадь поверхности). С учетом (2.3), дифференциальное выражение первого закона можно представить в виде:

dU = Q - p. dV Aнемех (2.4)

В дальнейшем изложении немеханическими видами работы мы будем, по умолчанию, пренебрегать.

Механическую работу, производимую при расширении против внешнего давления pex, рассчитывают по формуле:

A = (2.5)

Если процесс расширения обратим, то внешнее давление отличается от давления системы (например, газа) на бесконечно малую величину: pex = pin - dp и в формулу (2.5) можно подставлять давление самой системы, которое определяется по уравнению состояния.

Проще всего рассчитывать работу, совершаемую идеальным газом, для которого известно уравнение состояния p = nRT / V (табл. 1).

0,0(0 оценок)
Ответ:
nikitkaandreev1
nikitkaandreev1
19.06.2021 23:27

Шаг 1. Мы ввели систему отсчета: 1) выбрали началом отсчета дерево, от которого начинал свое движение пешеход; 2) направили координатную ось вдоль дороги в направлении движения пешехода; 3) включили часы (секундомер) в момент начала движения тел.

Шаг 2. Были определены начальные координаты пешехода (xп0 = 0) и велосипедиста (xв0= 20 м).

Шаг 3. Используя введенную систему отсчета, мы определили значения скоростей движения пешехода (vп = 1 м/с) и велосипедиста (vв = -3 м/с).

Таким образом, первые три шага решения задачи не зависят от того, каким графическим или аналитическим) мы собираемся ее решать. Но уже следующий шаг будет отличаться от того, что мы делали при графическом решения.

Шаг 4 (аналитический). Запишем в аналитическом виде законы движения тел, учитывая известные данные. Поскольку в задаче движутся два тела (пешеход и велосипедист), то мы получаем два закона движения:

xп = 0 + 1 · t, xв = 20 - 3 · t.

Шаг 5 (аналитический). Представим в виде уравнения условие задачи – встречу велосипедиста и пешехода. Встреча двух тел означает, что положения тел в пространстве совпадут в некоторый момент времени t = tвстр, т. е. в этот момент времени совпадут их координаты

Объяснение:

Шаг 6 (аналитический). Запишем вместе полученные в шагах 4 и 5 выражения, присвоив каждому из них свои номер и название.

xп = 0 + 1 · t, (1) (закон движения пешехода)

xв = 20 - 3 · t, (2) (закон движения велосипедиста)

xп = xв. (3) (условие встречи пешехода и велосипедиста)

Шаг 7 (аналитический). Решение уравнений.

Для того чтобы найти значение времени t в интересующий нас момент встречи, воспользуемся условием встречи пешехода и велосипедиста – уравнением (3). Оно предполагает равенство координат двух тел. Подставим в него выражения для xп и xв из уравнений (1) и (2):

0 + 1 · t = 20 - 3 · t

Приведем подобные слагаемые и решим уравнение:

(1+3) · t = 20, t = 20/4 = 5 (с).

Таким образом, мы установили, что встреча пешехода и велосипедиста состоится через 5 с после начала движения.

Теперь определим координату точки, в которой состоится встреча. Для этого подставим полученное значение момента встречи tвстр = 5 с в закон движения пешехода – уравнение (1):

xп = 0 + 1 · tвстр = 0 + 1 · 5 = 5 (м).

Это означает, что в момент встречи координата пешехода будет равна xп = 5. Следовательно, встреча произойдет в 5 м от начала отсчета – дерева, от которого начал движение пешеход.

Ясно, что координату места встречи можно было определить, подставив время tвстр = 5 с и в закон движения велосипедиста – уравнение (2):

xв = 20 - 3 · tвстр = 20 - 3 · 5 = 5 (м).

Естественно, мы получили то же самое значение хвстр, так как координаты пешехода и велосипедиста в момент встречи совпадают.

Итоги

При аналитическом решения задачи «встреча» момент встречи и координата места встречи определяются из равенства координат в законах движения тел, записанных в аналитическом виде

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота