яку силу тяги розвиває велосипедист, який спускається по схилу з прискоренням 4 м/с^2. Коефіцієнт тертя дорівнює 0,2. Схил утворює кут 30° з горизонтом. Маса велосипедеста разом з велосиведом 100кг
Ускорение точки есть производная от скорости по времени
или вторая производная от радиус-вектора по времени:
a = dv/dt = d2
r/dt
2
(1.3)
При решении задач кинематики уравнения (1.1) – (1.3) используются в скалярной форме. Чтобы осуществить такой перевод,
следует определить, какой из видов движения (прямолинейное,
криволинейное, вращательное) рассматривается в данной конкретной задаче. Рассмотрим особенности использования уравнений (1.1) – (1.3) для каждого на этих видов движения.
Прямолинейное движение. В этом случае координатную ось
целесообразно выбрать в направлении движения, а положение
точки характеризовать координатой х, равной расстоянию движущейся точки от начала отсчета. Кинематическое уравнение (1)
примет вид:
x = x (t) (1.4)
Мгновенная скорость
v = dx / dt (1.5)
Мгновенное ускорение
a = dv / dt = d2
x / dt
2
(1.6)
Уравнение равномерного движения
x = x0 + vt, (1.7)
или при x0 = 0 x = vt. (1.8)
Уравнение равнопеременного движения
x = x0 + v0t + at2
/2 (1.9)
где x0 – расстояние от движущейся точки до начала отсчета в момент времени t = 0, v0 – скорость точки в этот момент времени.
Скорость равнопеременного движения
v = v0 + at (1.10)
Исключая время из (1.9) и (1.10), можно получить:
2ax = v2
- v0
2
. (1.11)
Криволинейное движение. Для задания движения точки в
этом случае можно пользоваться двумя В одном из них
указывается траектория точки и уравнение движения точки по
кривой:
S = S ( t ) (1.12)
При этом мгновенная скорость выражается так же, как и в случае прямолинейного движения:
v = dS / dt, (1.13)
а направление мгновенной скорости в каждой точке траектории
совпадает с направлением касательной к траектории в этой же
точке.
Для нахождения мгновенного ускорения a его рассматривают
состоящим из двух составляющих:
тангенциального ускорения aτ, характеризующего изменение
скорости по модулю и направленного по касательной к траектории: aτ = dv / dt, (1.14)
нормального ускорения an, характеризующего изменение
скорости по направлению и направленного к центру кривизны
траектории an = v2 / R (1.15)
где R радиус кривизны траектории. Полное ускорение
a = an + aτ или a = √ an
2
+ aτ
2
. (1.16)
При другом описания криволинейного движения указываются уравнения движения точки, выражающие зависимость
координат точки от времени. В случае плоского движения достаточно указать два уравнения:
x = x (t), y = y (t) (1.17)
Уравнение траектории у = y(x) в этом случае находится исключением времени из уравнений (1.17). Проекции скорости
на оси координат
vx = dx / dt, vy = dy / dt. (1.18)
Полная скорость выражается через проекции соотношением:
v = √ vx
2
+ vy
2
. (1.19)
Проекции полного ускорения на оси координат
ax = dvx / dt = d2
x / dt
2
, ay = dvy / dt = d2y / dt
2
. (1.20)
Полное ускорение
a = √ ax
2
+ ay
2
. (1.21))
Вращательное движение вокруг неподвижной оси
Любая точка вращающегося тела описывает окружность в
плоскости, перпендикулярной оси вращения. Поворот радиусвектора точки за время t определяет угол поворота φ всего тела.
Зависимость φ от t называется кинематическим уравнением
враще-ния: φ = φ (t).
(1.22)
Мгновенная угловая скорость
ω = dφ / dt. (1.23)
Мгновенное угловое ускорение
ε = dω / dt = d2
φ / dt
2
. (1.24)
Уравнения равномерного вращения
φ = ωt; ω = const; ε = 0. (1.25)
Уравнения равнопеременного вращения
φ = ω0t + εt
2
/2. (1.26)
Угловая скорость равнопеременного вращения
ω = ω0 + εt. (1.27)
Исключив время из уравнений (1.26) и (1.27), можно получить:
2εφ = ω2
- ω0
2
. (1.28)
Следует отметить, что формулы (1.22)–(1.28) аналогичны формулам (1.4)–(1.11) для прямолинейного движения точки.
Связь между линейными и угловыми величинами выражается
формулами: длина пути (дуги), пройденного точкой,
S = φR, (1.29)
где φ – угол поворота тела; R – радиус вращения тoчки.
Линейная скорость точки v = ωR. (1.30)
Ускорения точки aτ = εR, (1.31)
an = ω2
R. (1.32)
Приведенные выше соотношения дают возможность по известному закону движения рассчитать и построить траекторию движения тела, найти скорость и ускорение. Если же известны ускорение или скорость как функции времени и начальные условия, то
Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.
Значение скоростного напора определяется по соотношению:
w2/(2·g) = 2,02/(2·9,81) = 0,204 м
Потери напора воды на местные сопротивления составят:
∑ζМС·[w2/(2·g)] = (4,1+1)·0,204 = 1,04 м
Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):
hп = H - (p2-p1)/(ρ·g) - = 8 - ((1-1)·105)/(1000·9,81) - 0 = 8 м
Полученное значение потери напора носителя на трение составят:
8-1,04 = 6,96 м
Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10-3 Па·с, плотность воды – 1000 кг/м3):
Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10-3) = 200000
Согласно рассчитанному значению Re, причем 2320 <Re< 10/e, по справочной таблице рассчитаем коэффициент трения (для режима гладкого течения):
λ = 0,316/Re0,25 = 0,316/2000000,25 = 0,015
Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:
l = (Hоб·d) / (λ·[w2/(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м
ответ:требуемая длина трубопровода составит 213,235 м.
Відповідь:
Ускорение точки есть производная от скорости по времени
или вторая производная от радиус-вектора по времени:
a = dv/dt = d2
r/dt
2
(1.3)
При решении задач кинематики уравнения (1.1) – (1.3) используются в скалярной форме. Чтобы осуществить такой перевод,
следует определить, какой из видов движения (прямолинейное,
криволинейное, вращательное) рассматривается в данной конкретной задаче. Рассмотрим особенности использования уравнений (1.1) – (1.3) для каждого на этих видов движения.
Прямолинейное движение. В этом случае координатную ось
целесообразно выбрать в направлении движения, а положение
точки характеризовать координатой х, равной расстоянию движущейся точки от начала отсчета. Кинематическое уравнение (1)
примет вид:
x = x (t) (1.4)
Мгновенная скорость
v = dx / dt (1.5)
Мгновенное ускорение
a = dv / dt = d2
x / dt
2
(1.6)
Уравнение равномерного движения
x = x0 + vt, (1.7)
или при x0 = 0 x = vt. (1.8)
Уравнение равнопеременного движения
x = x0 + v0t + at2
/2 (1.9)
где x0 – расстояние от движущейся точки до начала отсчета в момент времени t = 0, v0 – скорость точки в этот момент времени.
Скорость равнопеременного движения
v = v0 + at (1.10)
Исключая время из (1.9) и (1.10), можно получить:
2ax = v2
- v0
2
. (1.11)
Криволинейное движение. Для задания движения точки в
этом случае можно пользоваться двумя В одном из них
указывается траектория точки и уравнение движения точки по
кривой:
S = S ( t ) (1.12)
При этом мгновенная скорость выражается так же, как и в случае прямолинейного движения:
v = dS / dt, (1.13)
а направление мгновенной скорости в каждой точке траектории
совпадает с направлением касательной к траектории в этой же
точке.
Для нахождения мгновенного ускорения a его рассматривают
состоящим из двух составляющих:
тангенциального ускорения aτ, характеризующего изменение
скорости по модулю и направленного по касательной к траектории: aτ = dv / dt, (1.14)
нормального ускорения an, характеризующего изменение
скорости по направлению и направленного к центру кривизны
траектории an = v2 / R (1.15)
где R радиус кривизны траектории. Полное ускорение
a = an + aτ или a = √ an
2
+ aτ
2
. (1.16)
При другом описания криволинейного движения указываются уравнения движения точки, выражающие зависимость
координат точки от времени. В случае плоского движения достаточно указать два уравнения:
x = x (t), y = y (t) (1.17)
Уравнение траектории у = y(x) в этом случае находится исключением времени из уравнений (1.17). Проекции скорости
на оси координат
vx = dx / dt, vy = dy / dt. (1.18)
Полная скорость выражается через проекции соотношением:
v = √ vx
2
+ vy
2
. (1.19)
Проекции полного ускорения на оси координат
ax = dvx / dt = d2
x / dt
2
, ay = dvy / dt = d2y / dt
2
. (1.20)
Полное ускорение
a = √ ax
2
+ ay
2
. (1.21))
Вращательное движение вокруг неподвижной оси
Любая точка вращающегося тела описывает окружность в
плоскости, перпендикулярной оси вращения. Поворот радиусвектора точки за время t определяет угол поворота φ всего тела.
Зависимость φ от t называется кинематическим уравнением
враще-ния: φ = φ (t).
(1.22)
Мгновенная угловая скорость
ω = dφ / dt. (1.23)
Мгновенное угловое ускорение
ε = dω / dt = d2
φ / dt
2
. (1.24)
Уравнения равномерного вращения
φ = ωt; ω = const; ε = 0. (1.25)
Уравнения равнопеременного вращения
φ = ω0t + εt
2
/2. (1.26)
Угловая скорость равнопеременного вращения
ω = ω0 + εt. (1.27)
Исключив время из уравнений (1.26) и (1.27), можно получить:
2εφ = ω2
- ω0
2
. (1.28)
Следует отметить, что формулы (1.22)–(1.28) аналогичны формулам (1.4)–(1.11) для прямолинейного движения точки.
Связь между линейными и угловыми величинами выражается
формулами: длина пути (дуги), пройденного точкой,
S = φR, (1.29)
где φ – угол поворота тела; R – радиус вращения тoчки.
Линейная скорость точки v = ωR. (1.30)
Ускорения точки aτ = εR, (1.31)
an = ω2
R. (1.32)
Приведенные выше соотношения дают возможность по известному закону движения рассчитать и построить траекторию движения тела, найти скорость и ускорение. Если же известны ускорение или скорость как функции времени и начальные условия, то
можно найти закон движения тела.
Пояснення:
Исходные данные:
Скорость потока жидкости W = 2,0 м/с;
диаметр трубы d = 100 мм;
общий напор Н = 8 м;
относительная шероховатость 4·10-5.
Решение задачи:
Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.
Значение скоростного напора определяется по соотношению:
w2/(2·g) = 2,02/(2·9,81) = 0,204 м
Потери напора воды на местные сопротивления составят:
∑ζМС·[w2/(2·g)] = (4,1+1)·0,204 = 1,04 м
Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):
hп = H - (p2-p1)/(ρ·g) - = 8 - ((1-1)·105)/(1000·9,81) - 0 = 8 м
Полученное значение потери напора носителя на трение составят:
8-1,04 = 6,96 м
Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10-3 Па·с, плотность воды – 1000 кг/м3):
Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10-3) = 200000
Согласно рассчитанному значению Re, причем 2320 <Re< 10/e, по справочной таблице рассчитаем коэффициент трения (для режима гладкого течения):
λ = 0,316/Re0,25 = 0,316/2000000,25 = 0,015
Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:
l = (Hоб·d) / (λ·[w2/(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м
ответ:требуемая длина трубопровода составит 213,235 м.