Задача 4. Три проводящих сферы радиусов R = R, R2 = 2R, R3 ЗR расположены концентрически и изолированы.
На внутренней сфере расположен заряд q, а на других
зарядов нет. Найдите потенциал Фі внутренней сферы после
соединения незаряженных сфер тонким изолированным
проводником.
Напряжение, как и ЭДС, измеряется в вольтах (В) . Установившиеся значения напряжения обозначают прописной буквой U, неустановившиеся значения строчной буквой u. По аналогии с током различают постоянное и переменное напряжения. Постоянное напряжение может изменяться по величине, не изменяя при этом своего знака. Переменное напряжение периодически изменяет и величину и знак.
Пока шарик летит от первого соударения до второго, он полностью теряет касательную составляющую. Поэтому он, во второй раз падая на призму строго нормально, отражается в противоположном направлении и проходит свою траекторию в обратном направлении.
Найдем при каком угле это возможно. Введем систему координат, связав начало координат с ребром призмы, лежащим на столе, ось икс направим вдоль грани вверх, ось игрек - перпендикулярно грани, наружу. Начало координат лежит пусть на столе. Пусть острый угол при основании призмы равен альфа, тогда
Где v0x и v0y - касательная и нормальная составляющая скорости шарика ПОСЛЕ первого удара. Нам нужно, чтобы при каком-то τ обе вышенаписанные функции занулились (шарик ударяется о призму в тот момент, когда полностью погашена касательная компонента). Имеем
Левый угол найден.
Рассмотрим подзадачу справа. Ее удобнее решать "с конца", воспользовавшись принципом обратимости в механике. Итак, пусть шарик падает сверху на призму, имея какую-то начальную скорость. Опять-таки, упругое соударение изменит его нормальную проекцию скорости, но не касательную. Введем ось икс вдоль грани вниз, игрек перпендикулярно грани наружу, начало координат в месте падения шарика. Пусть острый угол при основании равен бета. Имеем
Опять-таки, время полета найдется из условия y(t) = 0. При этом мы точно знаем, что проекции скоростей в конце полета должны быть такими, чтобы после второго отражения шарик поехал горизонтально влево. А это произойдет когда скорость в конце будет направлена под углом бета к введенной оси икс. Итак
Ну угол при вершине найдем как