Гравитационная и инертная масса равны друг другу (практически с гигантской точностью (выше 10^-15), а в большинстве физических теорий — точно) , поэтому в большинстве случаев просто говорят о массе, не уточняя какую из них имеют в виду. На равенство инертной и гравитационной масс обратил внимание ещё Ньютон, он же впервые доказал, что они отличаются не более чем на 0,1 % (иначе говоря, равны с точностью до 10−3).[источник не указан 289 дней] . На сегодняшний день это равенство экспериментально проверено с очень высокой степенью точности (чувствительность к относительной разности инертной и гравитационной масс в лучшем эксперименте на 2009 год равна (0,3±1,8)×10−13)[2]
На равенство инертной и гравитационной масс обратил внимание ещё Ньютон, он же впервые доказал, что они отличаются не более чем на 0,1 % (иначе говоря, равны с точностью до 10−3).[источник не указан 289 дней] . На сегодняшний день это равенство экспериментально проверено с очень высокой степенью точности (чувствительность к относительной разности инертной и гравитационной масс в лучшем эксперименте на 2009 год равна (0,3±1,8)×10−13)[2]
N - мощность горелки,
t - искомое время,
Q - затраченное количество теплоты.
Разберемся поэтапно с Q.
На что наша горелка будет затрачивать энергию?
- плавление льда: λ m(л)
- нагрев образовавшейся воды до температуры кипения от начальной - нуля: c m(л) (100 - 0) = 100 c m(л)
- нагрев воды, которая уже находилась в сосуде: c m(в) (100 - 0) = 100 с m(в)
Таким образом, Q = λ m(л) + 100 c m(л) + 100 с m(в).
Запишем найденную формулу Q в формулу мощности:
N = ( λ m(л) + 100 c m(л) + 100 с m(в) ) / t,
откуда искомое время t:
t = ( λ m(л) + 100 c m(л) + 100 с m(в) ) / N.
Упростим выражение (выносим сотню и удельную теплоемкость воды за скобки):
t = ( λ m(л) + 100 c (m(л) + m(в)) ) / N,
t = ( 335*10^3 * 35*10^-2 + 10^2 * 42*10^2 * 9*10^-1) / 1,5*10^3,
t = (117250 + 378000) / 1,5*10^3,
t = (117,25 + 378) / 1,5 ≈ 330,16 c ≈ 5,5 мин