) Задание: заполнить таблицу, внести в соответствующие графы простые и сложные вещества, примеры атомов и молекул под номерами Атом Молекула Простое вещество Сложное вещество
1Для начала рассмотрите мензурку, какие единицы объема на ней указаны. Чаще всего это миллилитры или кубические сантиметры, но могут быть и другие величины, к примеру литры. Определите цену деления прибора по алгоритму. Выберите два близлежащих подписанных численными значениями штриха, отнимите из большего числа меньшее и разделите его на количество делений, расположенных между этими числами. Пример 1. Произвольно выбраны два соседних подписанных штриха: 20 и 10. Разность этих чисел равна: 20 мл - 10 мл = 10 мл. Делений между этими штрихами 10. Значит, цена деления мензурки равна 1 мл, так как 10 мл/10 = 1 мл. 2Налейте в мензурку столько воды, чтобы в нее полностью поместилось данное твердое тело. Обязательное условие - тело должно тонуть в воде или плавать внутри нее, иначе будет определен объем только той части тела, которая скрылась под водой. Зная цену деления, измерьте, сколько воды налито в мензурке (V1). Пример 2. Пусть надо измерить объем гвоздя. В мензурке 20 миллилитров воды. V1=20 миллилитров. 3Привяжите нить к телу и осторожно опустите его в воду, не кидая, чтобы не разбить дно сосуда. Замерьте, сколько воды стало в мензурке (V2). Найдите разницу объемов конечного и первоначального: V2 - V1. Полученное число и есть объем данного твердого тела. Измерять объем следует в тех же единицах, что и объем воды, то есть в единицах, указанных на измерительном цилиндре. Пример 2. После того, как тело опущено в воду, объем вырос до 27 миллилитров. V2 = 27 миллилитров. Объем тела равен: 27 миллилитров - 20 миллилитров = 7 миллилитров.
Шаг 1. Мы ввели систему отсчета: 1) выбрали началом отсчета дерево, от которого начинал свое движение пешеход; 2) направили координатную ось вдоль дороги в направлении движения пешехода; 3) включили часы (секундомер) в момент начала движения тел.
Шаг 2. Были определены начальные координаты пешехода (xп0 = 0) и велосипедиста (xв0= 20 м).
Шаг 3. Используя введенную систему отсчета, мы определили значения скоростей движения пешехода (vп = 1 м/с) и велосипедиста (vв = -3 м/с).
Таким образом, первые три шага решения задачи не зависят от того, каким графическим или аналитическим) мы собираемся ее решать. Но уже следующий шаг будет отличаться от того, что мы делали при графическом решения.
Шаг 4 (аналитический). Запишем в аналитическом виде законы движения тел, учитывая известные данные. Поскольку в задаче движутся два тела (пешеход и велосипедист), то мы получаем два закона движения:
xп = 0 + 1 · t, xв = 20 - 3 · t.
Шаг 5 (аналитический). Представим в виде уравнения условие задачи – встречу велосипедиста и пешехода. Встреча двух тел означает, что положения тел в пространстве совпадут в некоторый момент времени t = tвстр, т. е. в этот момент времени совпадут их координаты
Объяснение:
Шаг 6 (аналитический). Запишем вместе полученные в шагах 4 и 5 выражения, присвоив каждому из них свои номер и название.
xп = xв. (3) (условие встречи пешехода и велосипедиста)
Шаг 7 (аналитический). Решение уравнений.
Для того чтобы найти значение времени t в интересующий нас момент встречи, воспользуемся условием встречи пешехода и велосипедиста – уравнением (3). Оно предполагает равенство координат двух тел. Подставим в него выражения для xп и xв из уравнений (1) и (2):
0 + 1 · t = 20 - 3 · t
Приведем подобные слагаемые и решим уравнение:
(1+3) · t = 20, t = 20/4 = 5 (с).
Таким образом, мы установили, что встреча пешехода и велосипедиста состоится через 5 с после начала движения.
Теперь определим координату точки, в которой состоится встреча. Для этого подставим полученное значение момента встречи tвстр = 5 с в закон движения пешехода – уравнение (1):
xп = 0 + 1 · tвстр = 0 + 1 · 5 = 5 (м).
Это означает, что в момент встречи координата пешехода будет равна xп = 5. Следовательно, встреча произойдет в 5 м от начала отсчета – дерева, от которого начал движение пешеход.
Ясно, что координату места встречи можно было определить, подставив время tвстр = 5 с и в закон движения велосипедиста – уравнение (2):
xв = 20 - 3 · tвстр = 20 - 3 · 5 = 5 (м).
Естественно, мы получили то же самое значение хвстр, так как координаты пешехода и велосипедиста в момент встречи совпадают.
Итоги
При аналитическом решения задачи «встреча» момент встречи и координата места встречи определяются из равенства координат в законах движения тел, записанных в аналитическом виде
1Для начала рассмотрите мензурку, какие единицы объема на ней указаны. Чаще всего это миллилитры или кубические сантиметры, но могут быть и другие величины, к примеру литры. Определите цену деления прибора по алгоритму. Выберите два близлежащих подписанных численными значениями штриха, отнимите из большего числа меньшее и разделите его на количество делений, расположенных между этими числами. Пример 1. Произвольно выбраны два соседних подписанных штриха: 20 и 10. Разность этих чисел равна: 20 мл - 10 мл = 10 мл. Делений между этими штрихами 10. Значит, цена деления мензурки равна 1 мл, так как 10 мл/10 = 1 мл. 2Налейте в мензурку столько воды, чтобы в нее полностью поместилось данное твердое тело. Обязательное условие - тело должно тонуть в воде или плавать внутри нее, иначе будет определен объем только той части тела, которая скрылась под водой. Зная цену деления, измерьте, сколько воды налито в мензурке (V1). Пример 2. Пусть надо измерить объем гвоздя. В мензурке 20 миллилитров воды. V1=20 миллилитров. 3Привяжите нить к телу и осторожно опустите его в воду, не кидая, чтобы не разбить дно сосуда. Замерьте, сколько воды стало в мензурке (V2). Найдите разницу объемов конечного и первоначального: V2 - V1. Полученное число и есть объем данного твердого тела. Измерять объем следует в тех же единицах, что и объем воды, то есть в единицах, указанных на измерительном цилиндре. Пример 2. После того, как тело опущено в воду, объем вырос до 27 миллилитров. V2 = 27 миллилитров. Объем тела равен: 27 миллилитров - 20 миллилитров = 7 миллилитров.
Шаг 1. Мы ввели систему отсчета: 1) выбрали началом отсчета дерево, от которого начинал свое движение пешеход; 2) направили координатную ось вдоль дороги в направлении движения пешехода; 3) включили часы (секундомер) в момент начала движения тел.
Шаг 2. Были определены начальные координаты пешехода (xп0 = 0) и велосипедиста (xв0= 20 м).
Шаг 3. Используя введенную систему отсчета, мы определили значения скоростей движения пешехода (vп = 1 м/с) и велосипедиста (vв = -3 м/с).
Таким образом, первые три шага решения задачи не зависят от того, каким графическим или аналитическим) мы собираемся ее решать. Но уже следующий шаг будет отличаться от того, что мы делали при графическом решения.
Шаг 4 (аналитический). Запишем в аналитическом виде законы движения тел, учитывая известные данные. Поскольку в задаче движутся два тела (пешеход и велосипедист), то мы получаем два закона движения:
xп = 0 + 1 · t, xв = 20 - 3 · t.
Шаг 5 (аналитический). Представим в виде уравнения условие задачи – встречу велосипедиста и пешехода. Встреча двух тел означает, что положения тел в пространстве совпадут в некоторый момент времени t = tвстр, т. е. в этот момент времени совпадут их координаты
Объяснение:
Шаг 6 (аналитический). Запишем вместе полученные в шагах 4 и 5 выражения, присвоив каждому из них свои номер и название.
xп = 0 + 1 · t, (1) (закон движения пешехода)
xв = 20 - 3 · t, (2) (закон движения велосипедиста)
xп = xв. (3) (условие встречи пешехода и велосипедиста)
Шаг 7 (аналитический). Решение уравнений.
Для того чтобы найти значение времени t в интересующий нас момент встречи, воспользуемся условием встречи пешехода и велосипедиста – уравнением (3). Оно предполагает равенство координат двух тел. Подставим в него выражения для xп и xв из уравнений (1) и (2):
0 + 1 · t = 20 - 3 · t
Приведем подобные слагаемые и решим уравнение:
(1+3) · t = 20, t = 20/4 = 5 (с).
Таким образом, мы установили, что встреча пешехода и велосипедиста состоится через 5 с после начала движения.
Теперь определим координату точки, в которой состоится встреча. Для этого подставим полученное значение момента встречи tвстр = 5 с в закон движения пешехода – уравнение (1):
xп = 0 + 1 · tвстр = 0 + 1 · 5 = 5 (м).
Это означает, что в момент встречи координата пешехода будет равна xп = 5. Следовательно, встреча произойдет в 5 м от начала отсчета – дерева, от которого начал движение пешеход.
Ясно, что координату места встречи можно было определить, подставив время tвстр = 5 с и в закон движения велосипедиста – уравнение (2):
xв = 20 - 3 · tвстр = 20 - 3 · 5 = 5 (м).
Естественно, мы получили то же самое значение хвстр, так как координаты пешехода и велосипедиста в момент встречи совпадают.
Итоги
При аналитическом решения задачи «встреча» момент встречи и координата места встречи определяются из равенства координат в законах движения тел, записанных в аналитическом виде