Для определения направления движения проводника в магнитном поле можно пользоваться правилом левой руки, которое формулируется следующим образом:
Если расположить левую руку так, чтобы магнитные линии пронизывали ладонь, а вытянутые четыре пальца указывали направление тока в проводнике, то отогнутый большой палец укажет направление движения проводника.
Сила, действующая на проводник с током в магнитном поле, зависит как от тока в проводнике, так и от интенсивности магнитного поля.
Основной величиной, характеризующей интенсивность магнитного поля, является магнитная индукция В. Единицей измерения магнитной индукции является тесла (Тл=Вс/м2).
О магнитной индукции можно судить по силе действия магнитного поля на проводник с током, помещенный в это поле. Если на проводник длиной 1 м и с током 1 А, расположенный перпендикулярно магнитным линиям в равномерном магнитном поле, действует сила в 1 Н (ньютон), то магнитная индукция такого поля равна 1 Тл (тесла).
Магнитная индукция является векторной величиной, ее направление совпадает с направлением магнитных линий, причем в каждой точке поля вектор магнитной индукции направлен по касательной к магнитной линии.
Сила F, действующая на проводник с током в магнитном поле, пропорциональна магнитной индукции В, току в проводнике I и длине проводника l, т. е.
F=BIl.
Эта формула верна лишь в том случае, когда проводник с током расположен перпендикулярно магнитным линиям равномерного магнитного поля.
Если проводник с током находится в магнитном поле под каким-либо углом а по отношению к магнитным линиям, то сила равна:
F=BIl sin a.
Если проводник расположить вдоль магнитных линий, то сила F станет равной нулю, так как а=0.
Поскольку ни период, ни время, ни частота оборотов в условии не заданы, определить тангенциальное ускорение в метрах за секунду в квадрате не представляется возможным. Ничего не остаётся, как привязать это ускорение к углу поворота, тогда у нас будут единицы м/(рад*с)
Для определения направления движения проводника в магнитном поле можно пользоваться правилом левой руки, которое формулируется следующим образом:
Если расположить левую руку так, чтобы магнитные линии пронизывали ладонь, а вытянутые четыре пальца указывали направление тока в проводнике, то отогнутый большой палец укажет направление движения проводника.
Сила, действующая на проводник с током в магнитном поле, зависит как от тока в проводнике, так и от интенсивности магнитного поля.
Основной величиной, характеризующей интенсивность магнитного поля, является магнитная индукция В. Единицей измерения магнитной индукции является тесла (Тл=Вс/м2).
О магнитной индукции можно судить по силе действия магнитного поля на проводник с током, помещенный в это поле. Если на проводник длиной 1 м и с током 1 А, расположенный перпендикулярно магнитным линиям в равномерном магнитном поле, действует сила в 1 Н (ньютон), то магнитная индукция такого поля равна 1 Тл (тесла).
Магнитная индукция является векторной величиной, ее направление совпадает с направлением магнитных линий, причем в каждой точке поля вектор магнитной индукции направлен по касательной к магнитной линии.
Сила F, действующая на проводник с током в магнитном поле, пропорциональна магнитной индукции В, току в проводнике I и длине проводника l, т. е.
F=BIl.
Эта формула верна лишь в том случае, когда проводник с током расположен перпендикулярно магнитным линиям равномерного магнитного поля.
Если проводник с током находится в магнитном поле под каким-либо углом а по отношению к магнитным линиям, то сила равна:
F=BIl sin a.
Если проводник расположить вдоль магнитных линий, то сила F станет равной нулю, так как а=0.
Согласно условию скорость зависит от угла поворота $v(\phi)=\frac{\phi}{2\pi}*V$
Нормально ускорение: $a_n=\frac{v^2}{R}$
а) $\phi=2\pi$ $a_n=\frac{V^2}{R}$
б) $\phi=\pi$ $v(\phi)=\frac{\pi}{2\pi}*V=\frac{V}{2}$ $a_n=\frac{V^2}{4R}$
в) $\phi=\frac{\pi}{2}$ $v(\phi)=\frac{\frac{pi}{2}}{2\pi}*V=\frac{V}{4}$
$a_n=\frac{V^2}{16R}$
г) $\phi=\frac{\pi}{3}$ $v(\phi)=\frac{\frac{pi}{3}}{2\pi}*V=\frac{V}{6}$
$a_n=\frac{V^2}{36R}$
д) $\phi=0$ $a_n=0$
Тангенциальное ускорение:
Поскольку ни период, ни время, ни частота оборотов в условии не заданы, определить тангенциальное ускорение в метрах за секунду в квадрате не представляется возможным. Ничего не остаётся, как привязать это ускорение к углу поворота, тогда у нас будут единицы м/(рад*с)
Тангенциальное ускорение $a_{tau}=\frac{V-0}{2\pi}=\frac{V}{2\pi}$
Оно будет постоянным для всего оборота $a_{tau}=\frac{V}{2*3,14}\approx 0,16V$
а) $\phi=2\pi$ $a_{tau}\approx 0,16V$
б) $\phi=\pi$ $a_{tau}\approx 0,16V$
в) $\phi=\frac{\pi}{2}$ $a_{tau}\approx 0,16V$
г) $\phi=\frac{\pi}{3}$ $a_{tau}\approx 0,16V$
д) $\phi=0$ $a_{tau}\approx 0,16V$
Полное ускорение: $a=\sqrt{a_n^2+a_{\tau}^2}$
а) $\phi=2\pi$ $a=\sqrt{(\frac{V^2}{R})^2+(0,16V)^2}$
б) $\phi=\pi$ $a=\sqrt{(\frac{V^2}{4R})^2+(0,16V)^2}$
в) $\phi=\frac{\pi}{2}$ $a=\sqrt{(\frac{V^2}{16R})^2+(0,16V)^2}$
г) $\phi=\frac{\pi}{3}$ $a=\sqrt{(\frac{V^2}{36R})^2+(0,16V)^2}$
д) $\phi=0$ $a=\sqrt{(0,16V)^2}=0,16V$