Сила Лоренца — сила, с которой электромагнитное поле, согласно классической (неквантовой) электродинамике, действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью {\displaystyle \mathbf {v} }\mathbf{v} заряд {\displaystyle q\ }q\ лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического {\displaystyle \mathbf {E} }\mathbf {E} и магнитного {\displaystyle \mathbf {B} }\mathbf {B} полей. В Международной системе единиц (СИ) выражается как[2]:
Сила Лоренца, действующая на быстро движущиеся заряженные частицы в пузырьковой камере, приводит к появлению траекторий положительного и отрицательного заряда, которые изгибаются в противоположных направлениях.
Говорится, что электромагнитная сила, действующая на заряд q представляет собой комбинацию силы, действующей в направлении электрического поля E пропорциональной величине поля и количеству заряда, и силы, действующей под прямым углом к магнитному полю B и скорости v, пропорциональная величине магнитного поля, заряду и скорости. Вариации этой базовой формулы описывают магнитную силу действующую на проводник с током (иногда называемую силой Лапласа), электродвижущую силу в проволочной петле, движущейся через область с магнитным полем (закон индукции Фарадея), и силу, действующую на движущиеся заряженные частицы.
Историки науки предполагают, что этот закон подразумевался в статье Джеймса Клерка Максвелла, опубликованной в 1865 году[3] Хендрик Лоренц привёл полный вывод этой формулы в 1895 г.[4] определив вклад электрической силы через несколько лет после того, как Оливер Хевисайд правильно определил вклад магнитной силы.[5][6]
Для силы Лоренца, так же как и для сил инерции, третий закон Ньютона не выполняется. Лишь переформулировав этот закон Ньютона как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость для сил Лоренца[7].
Сила Лоренца — сила, с которой электромагнитное поле, согласно классической (неквантовой) электродинамике, действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью {\displaystyle \mathbf {v} }\mathbf{v} заряд {\displaystyle q\ }q\ лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического {\displaystyle \mathbf {E} }\mathbf {E} и магнитного {\displaystyle \mathbf {B} }\mathbf {B} полей. В Международной системе единиц (СИ) выражается как[2]:
Сила Лоренца, действующая на быстро движущиеся заряженные частицы в пузырьковой камере, приводит к появлению траекторий положительного и отрицательного заряда, которые изгибаются в противоположных направлениях.
{\displaystyle \mathbf {F} =q\left(\mathbf {E} +[\mathbf {v} \times \mathbf {B} ]\right).}{\displaystyle \mathbf {F} =q\left(\mathbf {E} +[\mathbf {v} \times \mathbf {B} ]\right).}
Говорится, что электромагнитная сила, действующая на заряд q представляет собой комбинацию силы, действующей в направлении электрического поля E пропорциональной величине поля и количеству заряда, и силы, действующей под прямым углом к магнитному полю B и скорости v, пропорциональная величине магнитного поля, заряду и скорости. Вариации этой базовой формулы описывают магнитную силу действующую на проводник с током (иногда называемую силой Лапласа), электродвижущую силу в проволочной петле, движущейся через область с магнитным полем (закон индукции Фарадея), и силу, действующую на движущиеся заряженные частицы.
Историки науки предполагают, что этот закон подразумевался в статье Джеймса Клерка Максвелла, опубликованной в 1865 году[3] Хендрик Лоренц привёл полный вывод этой формулы в 1895 г.[4] определив вклад электрической силы через несколько лет после того, как Оливер Хевисайд правильно определил вклад магнитной силы.[5][6]
Для силы Лоренца, так же как и для сил инерции, третий закон Ньютона не выполняется. Лишь переформулировав этот закон Ньютона как закон сохранения импульса в замкнутой системе из частиц и электромагнитного поля, можно восстановить его справедливость для сил Лоренца[7].
А ты уверен что там скорость не 72 км\ч а 73 км\ч?
*Рисуем рисунок, указываем направление сил*
N (сила реакции опоры) направленна вверх.
mg (сила тяжести) направленна вниз
a (центростремительное ускорение) направленно к центру окружности (вниз)
Получаем уравнение
mg - N = ma
N = ma - mg
Но мы знаем что N = P(вес тела), поэтому
P = ma - mg
Но так как по условию тело испытывает невесомость то P = 0
0 = ma - mg
ma = mg
a = g
g при нормальных условиях равно 9.8 м\с^2, однако обычно это значение округляют до 10
a = 10 м\с^2
Теперь по формуле центростремительного ускорения найдем радиус
Отсюда
Представляем 73 км\ч как 20.3 м\с (ЭТО ТВОЙ ПРОВАЛ ЕСЛИ ТЫ НЕ ПРАВИЛЬНО ДАЛ МНЕ СКОРОСТЬ)
Подставляем под формулу и находим что R = 41.1 м
ответ: R = 41.1 метр