Из всех трех разновидностей теплопередачи конвекция дает наибольшую эффективность, поэтому там, где возможно, надо использовать именно конвекцию. Но это не всегда возможно. Например, в электронике сейчас используют настолько плотное расположение плат, что теплоноситель проникает туда с трудом. Поэтому приходится тепло от электронных чипов отводить теплопроводностью. Это пример использования теплопроводности в технике. А использование ее в быту - это обычный нагрев дна кастрюли на плите газом. Горящий газ греет дно кастрюли, а тепло передается через стенку дна путем теплопроводности. Далее тепло от дна кастрюли поступает в воду и распространяется по всему объему воды путем конвекции. Если же рассматривать применение конвекции в технике, тогда это практически все теплообменники на всех предприятиях, заводах и электростанциях. Что касается излучения, то я знаю лишь одно использование излучения в быту - это лучевой нагрев помещения специальными инфракрасными радиаторами. Дело в том, что конвекция от горячих батарей греет вначале воздух, а уже через воздух это тепло поступает человеку. А излучение свободно проходит через воздух и поглощается сразу человеческим телом. Поэтому, используя лучевой нагрев, можно согреваться даже в довольно холодном помещении. В технике же тепловое излучение используется в основном в космических аппаратах. Там, в космосе отсутствует среда, которой мы могли бы передать избыточное тепло от энергоисточника аппарата. Поэтому приходится сбрасывать избыточное тепло излучением. Вроде это я неуверен прочитай все
низкочастотной корректирующей цепочкой RфСф, работающего на высокоомную нагрузку (Rг >R<Rн) и имеющего R = 1000 Ом, RН=106 Ом, допустимое падение
напряжения на Rф, равное Uф=6 В, и постоянную составляющую тока выходной цепи Iо=3 мА. Относительное усиление каскада Ун на низшей частоте fн = 20 Гц.Определим Rф и необходимый коэффициент низкочастотной коррекции b:
Rф = Uф / Iо ,
Rф = 6 /3 10-3 = 2000 Ом,
b = R / Rф ,
b = 1000 /2000 = 0,5
Если каскад предназначен для усиления гармонических сигналов, то
воспользуемся при его расчете семейством нормированных частотных характеристик для b = 0,5, приведенных на рисунок 1.81,а. Для того чтобы получить наилучшую результирующую характеристику, выберем на этом семействе характеристику с максимальным подъёмом в 1,2—1,5 раза больше заданного; такая характеристика соответствует m=0,9. По этой характеристике определим, что Yн=1,12 имеет место при Х=2,1, откуда найдем необходимые значения С и Сф:
Площадь усиления каскада равна
П = Кср· fгр.в ,
П = 100 · 14· 103 = 1400· 103.
Рассчитаем данные широкополосного каскада с
низкочастотной корректирующей цепочкой RфСф, работающего на высокоомную нагрузку (Rг >R<Rн) и имеющего R = 1000 Ом, RН=106 Ом, допустимое падение
напряжения на Rф, равное Uф=6 В, и постоянную составляющую тока выходной цепи Iо=3 мА. Относительное усиление каскада Ун на низшей частоте fн = 20 Гц.Определим Rф и необходимый коэффициент низкочастотной коррекции b:
Rф = Uф / Iо ,
Rф = 6 /3 10-3 = 2000 Ом,
b = R / Rф ,
b = 1000 /2000 = 0,5
Если каскад предназначен для усиления гармонических сигналов, то
воспользуемся при его расчете семейством нормированных частотных характеристик для b = 0,5, приведенных на рисунок 1.81,а. Для того чтобы получить наилучшую результирующую характеристику, выберем на этом семействе характеристику с максимальным подъёмом в 1,2—1,5 раза больше заданного; такая характеристика соответствует m=0,9. По этой характеристике определим, что Yн=1,12 имеет место при Х=2,1, откуда найдем необходимые значения С и Сф:
С = Х / 6,28· f· Rн ,
С = 2,1 / 6,28 ·20· 106 = 0,0167·10-6 Ф = 0,0167 мкФ≈0,02 мкФ;
Сф = m·С·Rн / R = m ·Х / 6,28· fн ·R ,
Сф = 0,9· 2,1 / 6,28· 20· 1000 = 0,015 ·10-3 = 15 мкФ