Белу́ха — гора. Самая высокая вершина Южной Сибири в составе Катунского хребта Алтая. Она имеет две острые пирамиды, разделенные широким седлом. Восточная пирамида, более высокая, поднимается на 4506 м над уровнем моря. Обе вершины и седло Белухи покрыты снегом. В районе Белухи находится главный центр оледенения Алтая. Со склонов Белухи спускается шесть больших длинных ледников и более двадцати малых. Первые ледники Белухи открыл Ф. В. Геблер в 1835 году. Его именем назван один из открытых им ледников. Высоту многих горных вершин, включая Белуху, определил известный сибирский исследователь, профессор Томского университета В. В. Сапожников.
Угол,смежный углу, равному 132 градусу будет равен:180-132=48 Проведенные высоты образуют 4 прямоугольных треугольника (два маленьких и два больших),то угол = 48 градусов - один из углов маленького прямоугольного треугольника,следовательно второй угол будет равен 90-48=42 градуса;угол,равный 42 градуса также является одним из углов большого прямоугольного треугольника,второй непрямой угол которого лежит в вершине равнобедренного треугольника.Следовательно,угол при вершине равен 90-42=48 градусов Т.к. данный треугольник равнобедренный,то углы при основании равны и их сумма сост.180-48=132 градуса Значит,один угол при основании равен 132/2=66
Проведенные высоты образуют 4 прямоугольных треугольника (два маленьких и два больших),то угол = 48 градусов - один из углов маленького прямоугольного треугольника,следовательно второй угол будет равен 90-48=42 градуса;угол,равный 42 градуса также является одним из углов большого прямоугольного треугольника,второй непрямой угол которого лежит в вершине равнобедренного треугольника.Следовательно,угол при вершине равен 90-42=48 градусов
Т.к. данный треугольник равнобедренный,то углы при основании равны и их сумма сост.180-48=132 градуса
Значит,один угол при основании равен 132/2=66