Геометрическим местом точек (сокращенно — ГМТ), обладающих некоторым свойством, называется множество всех точек, которые обладают этим свойством.
Решение задачи на поиск ГМТ должно содержать доказательство того, что все точки множества , указанного в ответе, обладают требуемым свойством, а также наоборот, что все точки, обладающие требуемым свойством, лежат в этом множестве .
Приведем классические и важнейшие известные примеры ГМТ.
Пример
Геометрическое место точек, удаленных от данной точки на заданное положительное расстояние, — окружность (это определение окружности).
Пример
Геометрическое место точек, равноудаленных от данной прямой, — две параллельные прямые.
Пример
Геометрическое место точек, равноудаленных от концов отрезка, — серединный перпендикуляр к отрезку.
Пример
Геометрическое место внутренних точек угла, равноудаленных от его сторон, — биссектриса угла.
Два последних примера будут рассмотрены детально в разделах "Серединный перпендикуляр" и "Биссектриса".
Утверждение
ГМТ, обладающих двумя свойствами, является пересечением двух множеств: ГМТ, обладающих первым свойством, и ГМТ, обладающих, вторых свойств
Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см
Объяснение:
Определение
Геометрическим местом точек (сокращенно — ГМТ), обладающих некоторым свойством, называется множество всех точек, которые обладают этим свойством.
Решение задачи на поиск ГМТ должно содержать доказательство того, что все точки множества , указанного в ответе, обладают требуемым свойством, а также наоборот, что все точки, обладающие требуемым свойством, лежат в этом множестве .
Приведем классические и важнейшие известные примеры ГМТ.
Пример
Геометрическое место точек, удаленных от данной точки на заданное положительное расстояние, — окружность (это определение окружности).
Пример
Геометрическое место точек, равноудаленных от данной прямой, — две параллельные прямые.
Пример
Геометрическое место точек, равноудаленных от концов отрезка, — серединный перпендикуляр к отрезку.
Пример
Геометрическое место внутренних точек угла, равноудаленных от его сторон, — биссектриса угла.
Два последних примера будут рассмотрены детально в разделах "Серединный перпендикуляр" и "Биссектриса".
Утверждение
ГМТ, обладающих двумя свойствами, является пересечением двух множеств: ГМТ, обладающих первым свойством, и ГМТ, обладающих, вторых свойств