1. PABCD - правильная пирамида. PO_|_ (ABCD) РА=10 см, РО=8 см, <POA=90° ΔPOA. по теореме Пифагора: AO²=PA²-PO² AO²=10²-8², AO²=36, AO =6 см. ΔADC: AC=2AO, AC=12 см, AD=DC=a по теореме Пифагора: AO²=AD²+CD² 12²=a²+a², 144=2a², a²=72, a=√72, a=6√2 см ответ: сторона основания АВ=6√2 см
2. Sбок.пов. =(1/2)Pосн*h h - апофему боковой грани правильной пирамиды найдем по теореме Пифагора из ΔАКР: PK_|_AB, AK=(1/2)AB, AK=3√2 см PA²=AK²+PK², 10²=(3√2)²+PK², PK²=100-18, PK²=82, PK=√82 см S=(1/2)*4*6√2*√82=12√164=12√(4*41)=24√41 S бок.=24√41 см²
Окружность вписана в трапецию АВСD
Значит из точек А,И,С,D к окружности проведены касательные.
Касательная перпендикулярна радиусу, проведенному в точки касания
ОК⊥ВС
ОМ⊥СD
OP⊥AD
OT⊥AB
⇒ ОС, ОВ, ОА и ОD - биссектрисы углов трапеции
Отрезки касательных, проведённых из одной точки, равны. (См рис. )
КМ = СМ = 1 см
РD = DM = 4 см
ВК=ВТ=АТ=AP=r
Так как сумма углов, прилежащих к стороне CD равна 180°
А биссектрисы делят угол пополам, то Δ СOD прямоугольный.
∠СOD=90°
ОM^2=CM·MD
OM^2=1·4
OM=2
r=0M=2
BC=2+1=3 cм
AD=2+4=6 cм
АВ=2+2=4 см
S( трапеции)=(BC+AD)·AB/2=(3+6)·4/2=18 cм²
РА=10 см, РО=8 см, <POA=90°
ΔPOA. по теореме Пифагора: AO²=PA²-PO²
AO²=10²-8², AO²=36, AO =6 см.
ΔADC: AC=2AO, AC=12 см, AD=DC=a
по теореме Пифагора: AO²=AD²+CD²
12²=a²+a², 144=2a², a²=72, a=√72, a=6√2 см
ответ: сторона основания АВ=6√2 см
2. Sбок.пов. =(1/2)Pосн*h
h - апофему боковой грани правильной пирамиды найдем по теореме Пифагора из ΔАКР: PK_|_AB, AK=(1/2)AB, AK=3√2 см
PA²=AK²+PK², 10²=(3√2)²+PK², PK²=100-18, PK²=82, PK=√82 см
S=(1/2)*4*6√2*√82=12√164=12√(4*41)=24√41
S бок.=24√41 см²